Talk|香港科技大学苟耘豪:MoCLE - 指令聚类MoE+通用专家解决多模态大模型任务冲突

本期为TechBeat人工智能社区571线上Talk。

北京时间2月8日(周四)20:00,香港科技大学博士生苟耘豪的Talk已准时在TechBeat人工智能社区开播!

他与大家分享的主题是: MoCLE - 指令聚类MoE+通用专家解决多模态大模型任务冲突”,系统地介绍了他的团队基于指令聚类和通用专家的MoE多模态大模型微调方法等相关工作所做的研究。

Talk·信息

主题:MoCLE - 指令聚类MoE+通用专家解决多模态大模型任务冲突

嘉宾:香港科技大学博士生 苟耘豪

时间:北京时间 2月8日(周四)20:00

地点:TechBeat人工智能社区

点击下方链接,即可观看视频!

TechBeatTechBeat是荟聚全球华人AI精英的成长社区,每周上新来自顶尖大厂、明星创业公司、国际顶级高校相关专业在读博士的最新研究工作。我们希望为AI人才打造更专业的服务和体验,加速并陪伴其成长。icon-default.png?t=N7T8https://www.techbeat.net/talk-info?id=849

Talk·介绍

本次分享介绍基于指令聚类和通用专家的MoE多模态大模型微调方法。现有的方法让所有数据一起微调,造成任务冲突。我们对任务指令进行聚类,使用聚类结果选择合适的任务专家从而缓解冲突。同时,一个通用专家从所有数据学习共享的知识,增强模型对新任务的泛化性。

Talk大纲

1、背景 - 多模态大模型指令微调的方法介绍

2、观察 - 更多指令数据不一定能带来更好的模型

3、方法 - MoCLE:基于指令聚类和通用专家的MoE多模态大模型微调方法

4、实验 - 聚类专家缓解冲突,通用专家提升泛化

5、结论

Talk·预习资料

Image

论文链接:

https://arxiv.org/abs/2312.12379

Image

论文链接:

https://arxiv.org/pdf/2305.06500.pdf

Talk·提问交流

在Talk界面下的【交流区】参与互动!留下你的打call🤟和问题🙋,和更多小伙伴们共同讨论,被讲者直接翻牌解答!

你的每一次贡献,我们都会给予你相应的i豆积分,还会有惊喜奖励哦!

Talk·嘉宾介绍

Image

苟耘豪

香港科技大学·博士生

香港科技大学和南方科技大学二年级联培博士生,师从James T. Kwok教授和Yu Zhang教授。主要研究方向为多模态大语言模型,视觉-语言模型与零样本学习,相关工作发表于CVPR、ECCV、CIKM等计算机视觉和数据挖掘的顶级学术会议。

个人主页: 

TechBeat


关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值