Talk|北京大学杨灵:扩散模型的算法创新与领域应用

北京大学博士生杨灵在TechBeat人工智能社区分享了关于扩散模型的最新研究成果,包括算法改进在文生图、视频编辑及药物发现中的应用,以及与大模型结合的创新方法,探讨了复杂条件生成中的挑战和解决方案。
摘要由CSDN通过智能技术生成

本期为TechBeat人工智能社区572线上Talk。

北京时间2月21日(周三)20:00,北京大学博士生杨灵的Talk已准时在TechBeat人工智能社区开播!

他与大家分享的主题是: 扩散模型的算法创新与领域应用,系统地介绍了他的团队基于扩散模型的算法创新与领域应用等相关工作所做的研究。

Talk·信息

主题:扩散模型的算法创新与领域应用

嘉宾:北京大学博士生 杨灵

时间:北京时间 2月21日(周三)20:00

地点:TechBeat人工智能社区

点击下方链接,即可观看视频!

Talk·介绍

扩散模型以其良好的可控性和逼真的生成质量成为这两年来最火的生成模型之一,在各个领域都展现出优越的性能。然而,在一些复杂的条件生成场景下,如文生图、视频编辑以及药物发现等,扩散模型依然无法很好地应对。本次分享将介绍如何通过改进扩散模型算法、引入外部辅助(例如大模型)来提升扩散模型应对复杂条件生成的能力。

Talk大纲

1、扩散模型原理与应用介绍

2、复杂条件生成场景下扩散模型存在的问题

3、扩散模型算法改进-文生图、视频编辑:介绍NeurIPS 2023、ICLR 2024论文

4、扩散模型算法改进-药物发现:介绍ICLR 2024论文

5、扩散模型与大模型结合-文生图、图片编辑:介绍与Pika Lab、斯坦福联合推出的最新SOTA文生图方法RPG-DiffusionMaster

6、总结与展望

Talk·预习资料

Image

论文链接:

https://openreview.net/forum?id=wRhLd65bDt

Image

论文链接:

https://openreview.net/forum?id=nFMS6wF2xq

代码链接:

https://github.com/YangLing0818/ContextDiff

Image

论文链接:

https://openreview.net/pdf?id=qH9nrMNTIW

代码链接:

https://github.com/YangLing0818/IPDiff

Image

论文链接:

https://arxiv.org/abs/2401.11708 

代码链接:

https://github.com/YangLing0818/RPG-DiffusionMaster

Talk·提问交流

在Talk界面下的【交流区】参与互动!留下你的打call🤟和问题🙋,和更多小伙伴们共同讨论,被讲者直接翻牌解答!

你的每一次贡献,我们都会给予你相应的i豆积分,还会有惊喜奖励哦!

Talk·嘉宾介绍

Image

杨灵

北京大学在读读博士生

北京大学博士在读三年级,研究兴趣是生成式AI、扩散模型、AI for Science,一作发表10多篇ICML/NeurIPS/ICLR/CVPR等顶会顶刊论文,目前担任TPAMI,ICML,NeurIPS,ICLR,KDD,AAAI等人工智能顶刊顶会审稿人。

个人主页: 

https://www.techbeat.net/grzytrkj?id=8345


关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值