卷积基础篇

本文介绍了全连接层在处理高维特征时的挑战,转而探讨了卷积层如何通过使用二维张量和互相关运算来降低计算量。文章详细解释了平移不变性和局部性原则,并通过实例展示了如何实现二维卷积和卷积层的应用,以及如何通过反向传播学习卷积核。
摘要由CSDN通过智能技术生成

全连接层到卷积

全连接层的问题

假设输入为36M的特征维度,运算量将进入上亿级别的,需要巨大的运算力。

全连接层到卷积

由于输入和输出变为矩阵(宽度,高度),因此权重由二维张量w_{i,j}变为4维张量w_{i,j,k,l}

h_{i,j} = \sum_{k,l}w_{i,j,k,l}x_{k,l}= \sum_{a,b}v_{i,j,a,b}x_{i+a,j+b}

原则一 平移不变性

对于计算h_{i,j}时,i,j对于v_{i,j,a,b}的取值无影响,所以h_{i,j} = \sum_{a,b}v_{i,j,a,b}x_{i+a,j+b}=\sum_{a,b}v_{a,b}x_{i+a,j+b}

原则二 局部性

当评估h_{i,j}时,不会用到远离x_{i,j}的参数

h_{i,j}=\sum_{a=-\bigtriangleup}^{\bigtriangleup}\sum_{b=-\bigtriangleup}^{\bigtriangleup}v_{a,b}x_{i+a,j+b}

互相关运算

严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation),而不是卷积运算。在卷积层中,输入张量和核张量通过互相关运算产生输出张量。

注意,输出大小略小于输入大小。这是因为我们需要足够的空间在图像上“移动”卷积核,所以卷积核只与图像中每个大小完全适合的位置进行互相关运算。 所以,输出大小等于(n_h-k_h+1) \times (n_w-k_w+1)

代码

互相关运算

import torch
from torch import nn
from d2l import torch as d2l

# 二维互相关运算
def corr2d(X,K):
    """K 卷积核"""
    h, w = K.shape
    Y = torch.zeros((X.shape[0]-h+1,X.shape[1]-w+1)) # 限制边界
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            # X[i:i+h,j:j+w]*K 两个矩阵进行运算
            Y[i,j] = (X[i:i+h,j:j+w]*K).sum()
    return Y

X = torch.tensor([[0.0, 1.0, 2.0], 
                            [3.0, 4.0, 5.0], 
                            [6.0, 7.0, 8.0]])
K = torch.tensor([ [0.0, 1.0], 
                             [2.0, 3.0 ] ])
corr2d(X, K)

实现二维卷积层

class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        # 随机初始化卷积层
        self.weight = nn.Parameter(torch.rand(kernel_size))
        # 偏差为0
        self.bias = nn.parameter(torch.zeros(1))

    # 前向传播(互相关运算)
    def forward(self, x):
        return corr2d(x, self.weight)+self.bias

卷积层的一个简单应用: 检测图像中不同颜色的边缘

X = torch.ones((6, 8))
X[:, 2:6] = 0
X

# 在该卷积核的运算下,只有当两列数字发生变化时才会出现除0之外的数字
# 从而判断边缘
K = torch.tensor([[1.0, -1.0]])

Y = corr2d(X, K)
print(Y)

#对水平边缘的检测
corr2d(X.t(), K.T)

学习由X生成Y的卷积核

# 输入通道数 输出通道数 w b
Conv2d = nn.Conv2d(1,1,kernel_size=(1,2),bias=False)

# 通道数 批量大小 长 宽
X = X.reshape((1,1,6,8))
Y = Y.reshape((1,1,6,7))

for i in range(10):
    Y_hat = Conv2d(X)

    l = (Y_hat - Y)**2#均方误差作为loss

    #反向传播前 梯度设成0
    Conv2d.zero_grad()

    #梯度下降
    l.sum().backward()

    #学习率=3e-2
    Conv2d.weight.data -= 3e-2 * Conv2d.weight.grad

    #每两次梯度下降后打印一次loss
    if (i+1) % 2 ==0:
        print(f"batch {i+1}, loss{l.sum():.3f}")

#查看学习后的卷积核
Conv2d.weight.data.reshape((1,2))

  • 11
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值