[附代码]稳态视觉诱发电位SSVEP之预训练模型提高性能

本文探讨如何利用预训练模型改进SSVEP的识别性能,通过深度学习网络实现特征提取和分类。实验在Benchmark和BETA数据库上取得良好效果,适用于提升特定受试者脑机接口的准确率和信息传输速率(ITR)。预训练模型为解决脑电信号识别不确定性提供了解决方案,并提出了跨受试者识别的未来研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SSVEP 之深度学习

深度学习已经被广泛运用在脑电信号分析来提高脑机接口的性能,这是一个end-to-end的方法,简单来说,只要搭建好深度学习网络,做好特征工程,然后分类即可,对于一个刚刚接触脑机接口领域深度学习的学习者来说,可以先忽略中间的数学相关的东西,先建一个网络,然后训练数据并跑出结果,这一步成功了,再理解每一层网络的背后含义,进而调优自己的网络,训练出一个更好的模型出来。

本文将利用预训练模型来提升SSVEP的ACC和ITR

  1. 详细的内容见知网:
    DOI: 10.27376/d.cnki.gwydu.2023.000003

  2. 简单介绍一下
    这是本人毕业论文的最后一章,前面也是用传统机器学习的算法来研究SSVEP,后面转向深度学习,深度学习在SSVEP领域已经有比较出色的成就。然而,预训练模型更是在深度学习的基础上又跳跃了一大步。意思很明显,就是在一个预训练模型的基础上,加上一个受试者的数据继续训练来优化模型,使得训练出来的模型更时候该名受试者。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑电信号要分类

你的鼓励是我创作的前进动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值