决策树系列4:随机森林 (三个臭皮匠顶个诸葛亮)

随机森林是一种基于bagging思想的机器学习方法,通过构建多棵决策树并行训练,以达到更好的预测效果。在随机森林中,样本集和属性集在构建每棵树时都会进行随机选择,确保每棵树的独立性和多样性。在分类问题中,随机森林采用投票方式决定最终结果;在回归问题中,则取所有树预测结果的平均值。随机森林在训练过程中能有效防止过拟合,提高模型稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

想了解一个人的人品一般询问多个熟悉他的人,而不是只问一个人,毕竟一个人的评价难免有失偏颇。对于决策树也是一样,单一的决策树有时候会过拟合,有时候效果不太理想。而随机森林就是利用多棵决策树共同做决策。毕竟三个臭皮匠顶个诸葛亮嘛。


随机森林

随机森林主要利用了 bagging 的思想,也就是多个学习器并行学习,共同预测结果。

随机森林有多棵决策树,每棵决策树并行独立训练。预测时每个决策树都预测出一个结果,大家共同决策:

  • 对于分类问题:大家投票少数服从多数
    • 例如今天是否适合打球
  • 对于回归问题:大家求平均值
    • 例如北京房价多少钱一平米

如何建立随机森林

随机森林之所以叫"随机"森林,是因为建立时有两个随机。

  1. 每棵树的样本集随机
    • 为了保证训练数据的相对独立性
  2. 每棵树的属性集随机
    • 为了保证训练过程的相对独立性
样本集随机

假设原始样本集有 N 个样本,则每棵树从中有放回的选择 N 个样本作为自己的样本集,这样每个树的样本集仍然是 N 个。

但由于是有放回的,所以对于一棵决策树而言,有些样本被选择了多次,有些样本没有被选到。

既保证了每棵树样本集个数和分布的一致,又保证了每个树的样本集相对独立。

属性随机
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值