零阶保持器(ZOH)与一阶低通滤波器频率特性分析

本文探讨了零阶保持器的频率特性,包括幅频和相频特性,以及其作为非理想低通滤波器的行为。同时,对比了一阶低通滤波器的频率响应,重点在于截止频率下信号衰减。通过Bode图展示了两者在不同频率下的表现,并结合实例解析了它们在信号处理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.零阶保持器(ZOH)频率特性分析

零阶保持器传递函数:

画 Bode 图进行频率分析:

s=tf('s');
T=0.0002; %采样周期0.0002s
G=(1-exp(-T*s))/s;
bode(G);

从图中可以看出:随着频率 ω 的的增加,当 ω 在 10000 附近时,零阶保持器的幅值和相位开始发生跳变。

  • 幅频特性中,幅值达到最低时立即发生跳变至最高,保持稳定后再次跳变至最低,如此往复;
  • 相频特性中,相位滞后,在 −180到−0。 之间呈锯齿状变化;
  • 从图中可以看出,零阶保持器是一个低通滤波器,但不是一个理想低通滤波器,高频信号通过零阶保持器不能完全消除,同时产生相位滞后

2.一阶低通滤波器频率特性分析


​    

画 Bode 图进行频率分析:

T=0.0002; %采样周期0.0002s
fc=1;
A=2*pi*fc*T;
s=tf('s');
H=(1)/(A*s+1);
bode(H);

 从图中可以看出:随着频率 ω 的的增加,当 ω 在 853 附近时,一阶低通滤波器开始衰减

到-3db.

 50hz幅值10信号叠加 0.5hz幅值1信号,截至0.5HZ,黑色为低通滤波器后波形,红色为原始叠加信号

function y = LPF(u)
Ts = 0.0002; %采样时间
fs = 1/Ts; %采样频率
fc = 0.5; %截止频率
alpha = 2*pi*fc*Ts/(1+2*pi*fc*Ts); %滤波系数
persistent uo1
if isempty(uo1)
    uo1=0;
end
  uo1= alpha*u+(1-alpha)*uo1;
y = uo1;

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

happy_baymax

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值