【Simulink】使用 ZOH 离散化二阶积分器系统,如何理解精确的离散时间系统模型 含仿真代码

常见的离散化方法有很多,大致可分为解析与数值两类,核心都是在精度与成本之间做取舍,工程中了解每种方法的精度的损失来源与排序,选择满足自己要求的离散模型即可。这篇文章重点是讨论“精确”离散化这一概念与ZOH离散化方法的理论推导,并以二阶积分器系统为例,给出具体实现步骤。

1. 精确的离散系统模型

理解精确的离散系统模型(Exact Discrete-Time Model)需要从连续系统到离散系统的转换来入手。精确的离散系统模型是指在离散化过程中,不仅保留了系统的动态特性,还确保了离散系统模型的输出在采样点上与连续系统的输出完全一致。

1.1 零阶保持器(ZOH)的特点

在零阶保持器方法中,假设系统的输入在每个采样周期内保持恒定,也就是输入信号是分段恒定的。这种假设在许多实际系统中是合理的,因为采样频率通常较高,输入的变化较缓慢。但由于这个假设,ZOH方法并不能精确反映连续系统的动态特性,而是提供了一种近似模型。

示意图

在这里插入图片描述

1.2 零阶保持器(ZOH)的精确性

  • 近似精确:在采样周期较短的情况下,零阶保持器方法提供的离散模型能够很好地近似连续系统的动态行为。离散化后的模型与连续系统在采样点上的输出接近,因此可以用于控制设计中。
  • 误差:由于输入在每个采样周期内被视为恒定,ZOH方法会引入一些近似误差。采样周期越长,误差越大;采样周期越短,误差越小。因此,ZOH方法的精确性高度依赖于采样周期的选择。

在数学上,“精确离散化”意味着从连续时间系统到离散时间系统的转换完全无误差,通常是通过解析方法得到离散模型。ZOH方法并非严格的精确离散化,而是通过一种特定的假设进行的近似离散化。对于精确的离散化,需要考虑系统在整个采样周期内的输入变化,而不仅仅是将输入视为分段恒定。

2. ZOH 离散化推导

想要将连续状态空间

{ x ˙ ( t ) = A x ( t ) + B u ( t ) y ( t ) = C x ( t ) \left\{\begin{array}{l}\dot{x}(t)=A x(t)+B u(t) \\y(t)=C x(t)\end{array}\right. { x˙(t)=Ax(t)+Bu(t)y(t)=Cx(t)

离散化为

{ x ( k + 1 ) = F x ( k ) + G u ( k ) y ( k ) = H x ( k ) \left\{\begin{array}{l}x(k+1)=F x(k)+G u(k) \\y(k)=H x(k)\end{array}\right. { x(k+1)=Fx(k)+Gu(k)y(k)=Hx(k)

先将连续状态空间定义的线性时不变系统的输入响应写为零输入响应(zero-input response)和零状态响应(zero-state response)之和。

x ( t ) = e A t x ( 0 ) + ∫ 0 t e A ( t − τ ) B u ( τ ) d τ x(t)=e^{A t} x(0)+\int_0^t e^{A(t-\tau)} B u(\tau) d \tau x(t)=eAtx(0)+0teA(tτ)Bu(τ)dτ

t = t k + 1 t=t_{k+1} t=tk+1,有

x ( t k + 1 ) = e A t k + 1 x ( 0 ) + ∫ 0 t k + 1 e A ( t k + 1 − τ ) B u ( τ ) d τ x\left(t_{k+1}\right)=e^{A t_{k+1}} x(0)+\int_0^{t_{k+1}} e^{A\left(t_{k+1}-\tau\right)} B u(\tau) d \tau x(tk+1)=eAtk+1x(0)+0tk+1eA(tk+1τ)Bu(τ)dτ

观察一下目标形式 x ( k + 1 ) = F x ( k ) + G u ( k ) x(k+1)=F x(k)+G u(k) x(k+1)=Fx(k)+Gu(k),还有 t k + 1 = t k + T t_{k+1}=t_k+T tk+1=tk+T,发现右边都是 x ( t k )

### 在Simulink中对连续系统进行离散化以实现模型预测控制(MPC) 在Simulink环境中,对于永磁同步电机(PMSM),要实现实现基于模型预测控制(MPC)的场定向控制(FOC),通常需要将连续系统的数学模型转换成适合计算机处理的形式——即离散时间状态空间表示。这一过程称为离散化。 #### 离散化的必要性和方法 由于实际应用中的控制器通常是数字式的,因此即使原始物理对象遵循的是连续动力学方程,也必须将其描述为离散形式以便于数值求解和实时执行。常见的做法是在保持原系统特性的前提下,采用零阶保持器(ZOH)或一阶保持器(FOH)等方式近似模拟采样-保持电路的效果,从而完成从s域到z域的变化[^2]。 具体来说,在Matlab/Simulink平台上的操作步骤如下: 1. **定义连续时间的状态空间模型** 假设已经获得了PMSM的线性化连续时间状态空间表达式\[ \dot{x}(t)=Ax(t)+Bu(t), y(t)=Cx(t)+Du(t)\] 2. **选择合适的采样时间和离散化方式** 根据实际控制需求选定合理的采样间隔T_s,并决定使用何种离散化方案(如欧拉法、梯形积分等)。这里推荐利用`c2d()`函数自动完成此任务,它可以提供多种算法供用户选择,包括但不限于双线性变换(Tustin's method)[^3]。 ```matlab Ts = 0.001; % Example sampling time of 1 ms sys_discrete = c2d(sys_continuous, Ts); ``` 3. **构建离散事件驱动的Simulink框图** 将上述得到的结果导入至Simulink项目里,创建相应的子系统模块;同时加入必要的量化元件(比如A/D转换)、延迟环节(z^-1)以及其他辅助组件来完善整个闭环结构。 4. **配置并运行仿真测试** 设置好初始条件之后就可以启动仿真实验了。期间应密切监控各关键节点的数据变化趋势,确保所设计的MPC能够稳定有效地跟踪给定轨迹。 通过以上流程可以在Simulink环境下建立起适用于PMSM FOC控制策略下的MPC框架,进而验证理论分析的有效性并为进一步优化参数奠定基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值