single session分析是fmri实验分析的最简单情况之一,这里以FSL官方的例子为例,总结一下这个方法:
http://fsl.fmrib.ox.ac.uk/fslcourse/lectures/feat1_part2.pdf
什么是single session分析
single-session分析是对单个被试数据进行体素级别的分析。 数据经过预处理后,得到各个体素上的时间序列数据, 之后将协变量写入design matrix进行GLM回归,得到单个被试的effect size统计量(或者也称为残差)。统计量得到的统计图像用阈值筛选后,得到具有统计显著性的体素/体素簇。举例而言,假设实验中有三种不同的事件(events):
- 第一种是word-generation
单词生成。被试在MRI扫描时屏幕会出现一个名词,要求被试想象一个和这个名词相关的动词。例如屏幕呈现单词“Burger”, 被试想到和Burger相关的动词“Fry” - 第二种是word-shadowing
单词隐藏。 被试看到屏幕上出现一个动词,被试只需要在脑海中重复这个动词就可以。例如屏幕上显示“swim”,被试只需要想一想“swim”。第三种是控制状态, Null event。 这时屏幕上出现一个十字, 被试什么都不需要想。整个session中,每个ISI大约6秒,事件顺序是随机打乱的,每个事件都会出现24次。
基于HRF的模型信号
单词生成(word-generation)这个实验中,我们预测大脑激活会是怎样的呢?首先,再整个扫描的过程中,被试看到了不同的刺激事件,这些事件都是非均匀分布在整个时间轴上的,这些刺激事件(例如word-generation)就如同一个单位脉冲,卷积上HRF模型信号,我们可以推测出大脑激活状态如下图:
如果某个体素上的信号与我们预测的高度相关,那么我们就可以推测这个体素所在的脑组织与word-generation这个事件相关。
类似,word-shadowing刺激在时间轴上的分布卷积上HRF信号,也可以得到“理论上”负责word-shadowing的voxel区域。
多元回归
别忘了,实验的过程中两个刺激事件在时间轴上是按照不等间距的方式分布的,那么理论上说,实验设计中的刺激产生的“模型”信号与实测信号吻合的非常好: