游戏的分类
- 按端分类:端游(steam),页游(4399),手游(手机,pad)
- 按盈利模式分类:付费游戏(一次买断,后续购买其它剧情或者包),免费游戏(IAP和广告盈利,比如王者荣耀-IAP,比如一些休闲小游戏,2048等-广告盈利)
游戏数据的"数据"类型
- 第一层:业务常规数据,这是最基础的数据,比如用户名,密码,竞技场排名,背包里的信息等,这一层的数据是业务最重要的数据,一旦出现问题会影响业务的正常运作
- 第二层:用户行为数据,指的是通过系统记录的用户在游戏中的行为轨迹,比如充值,通关,升级等,这部分数据量最大,也是最有挖掘价值的一块
- 第三层:产品运营数据,指的是针对部分用户行为数据二次抽象出来的数据,比如新增数,活跃率,留存率,付费率等,游戏行业常用的运营数据约200~300,这个是做好运营数据分析的基础
- 第四层:用户反馈数据,一般产生在游戏产品之外的,指的是用户在论坛,贴吧,taptap,app atore等平台对游戏的评价数据,提供了另一种数据分析视角和价值
游戏数据分析流程
- 明确需求:首先要明确分析的需求,即分析的目的,数据,内容等是什么
- 收集数据:从公司内部数据库可以收集到游戏注册人数等基础数据,从公司外部(微博,视频网站)可以收集到的评论内容数据
- 处理数据:处理数据就是采用适当的统计方法对收集的数据进行处理,提取有用的信息和规律。常用的SQL提取数据或者用python进行数据分析
- 分析数据:根据业务的场景,使用一定的数据分析思维和方法对数据进行分析,有探索分析,假设验证等,最后得出相关的分析结论
- 展现数据:主要通过图表来展现,常用的绘图工具有tableau,powerbi,excel等,可视化是展现分析过程或结论的重要一环
- 报告撰写:大部分的数据分析报告有分析背景,分析目标,分析过程和分析结论等部分。在报告中,一般会在开头就给出核心结论,后续再详细阐述,最后会再呼应结论,一般遵循总-分-总的结构
游戏公司职能分工(以手游为例)
- 设计和研发产品:策划,美术,技术人员
- 运营:用户运营,自媒体运营,平台运营,数据运营等
- 发行:UA,推广,商务关系,合作代言等
- 这3个模块均可以外包或代理给其他公司,当然也有研运一体化的公司(自主研发和发行产品)
- 研运一体化手游公司的部分和职能
- 策划,美术,技术(前端,后端,运维,数据中心(BI,DBA等)),运营(用户运营(社群,大客户,客服等),自媒体运营,商业化运营,数据运营等),发行(UA,商务等)
游戏数据分析师每天做什么
- 玩游戏:玩自己负责的数据分析的游戏,玩竞品游戏,感受同类别不同游戏带来的体验
- 漏斗分析:发现用户留存特别低,通过转化漏斗发现用户体验的不足
- AB测试:发现某个按钮的改动可以对留存有正向影响,通过实验确定这种假设是否成立
- 用户分群:基于模型实现用户价值划分,进而针对不同用户采用不同商业策略
- 用户获取:通过数据挖掘,发现什么样的投放事件能获取游戏的核心用户
- 指标异动溯源与趋势分析:包括周期性或者长期趋势的变化,对稳定性的评估
- 指标异动评估与解释:解释异动背后的原因,寻找关键数据指标与其它业务因素的关联性,举个例子,市场的变化,竞品竞争状况或产品运营与技术问题
- 数据可视化与报告:必备且基础的能力
- 预测和建模:一般使用统计方法和机器学习算法去做,主要目的是根据历史数据和其他相关变量构建模型测数据指标的未来趋势,帮助项目做一个初步的预算
概括起来,可以分为以下4个部分
- 基础支持:包括数据埋点的需求跟进和验收,数据仓库搭建,各类平台及运营工具搭建
- 产品调优:从实际的生产流程来看,游戏产品,特别是移动游戏,一旦正式推广开始,研发精力主要集中在各类SDK的对接,版本维护和后期内容填充上。因此,根据留存及付费分析对产品的基础数值,玩点摆放,核心体验进行优化的工作主要集中在产品测试阶段
- 运营优化&