一. 关于机器学习与深度学习的基础知识
1. LR, SVM, GBDT, RF等模型
2. 各种损失函数
3. 过拟合与欠拟合, 怎么办
4. 正则化,怎么做,意义
5. NN与BP
6. 梯度下降算法及其变种
7. 各种激活函数
8. 不平衡类问题
9. 模型融合方法及其特点
10. 分类问题中用均方损失的缺陷
11. 深度学习模型为什么要深
12. CNN中为什么做卷积,卷积怎么做,为什么做池化, 池化怎么做
13. 说几个常见的CNN架构
14. 计算图构建,前向计算损失,反向计算梯度
15. RNN和LSTM的结构,LSTM的前向计算,梯度消失问题
16. CNN和RNN中的参数共享
17. GAN中要学习的两组参数是什么
18. 关于tensorflow,常量与变量,数据读取,计算图...
19. 关于caffe,caffe源码的几个基本组成部分...
20. 关于mxnet, ndarray, autograd....
21. 特征工程: 特征预处理,特征选择,特征降维
22. 霍夫变换检测直线怎么做
23. 词袋模型, tf_idf计算, 词向量与词嵌入
24. K-mean中K的选择,其他聚类算法
25. 生成模型与判别模型
26. 准确率,召回率,F1分数, 混淆矩阵, TPR, FPR, ROC, AUC
28. 关于抽样的一些问题
29. 卷积的物理意义 <
1. LR, SVM, GBDT, RF等模型
2. 各种损失函数
3. 过拟合与欠拟合, 怎么办
4. 正则化,怎么做,意义
5. NN与BP
6. 梯度下降算法及其变种
7. 各种激活函数
8. 不平衡类问题
9. 模型融合方法及其特点
10. 分类问题中用均方损失的缺陷
11. 深度学习模型为什么要深
12. CNN中为什么做卷积,卷积怎么做,为什么做池化, 池化怎么做
13. 说几个常见的CNN架构
14. 计算图构建,前向计算损失,反向计算梯度
15. RNN和LSTM的结构,LSTM的前向计算,梯度消失问题
16. CNN和RNN中的参数共享
17. GAN中要学习的两组参数是什么
18. 关于tensorflow,常量与变量,数据读取,计算图...
19. 关于caffe,caffe源码的几个基本组成部分...
20. 关于mxnet, ndarray, autograd....
21. 特征工程: 特征预处理,特征选择,特征降维
22. 霍夫变换检测直线怎么做
23. 词袋模型, tf_idf计算, 词向量与词嵌入
24. K-mean中K的选择,其他聚类算法
25. 生成模型与判别模型
26. 准确率,召回率,F1分数, 混淆矩阵, TPR, FPR, ROC, AUC
28. 关于抽样的一些问题
29. 卷积的物理意义 <