自适应PID控制器的simulink建模与仿真

本文探讨了PID控制器的参数自适应调整,通过系统仿真展示了kp,ki,kd的收敛过程。介绍了自适应PID控制器的工作原理,其利用在线辨识调整参数以优化控制性能,涉及MATLAB实现及不同优化算法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.课题概述

2.系统仿真结果

3.核心程序与模型

4.系统原理简介

5.完整工程文件


1.课题概述

       对PID控制器参数kp,ki,kd进行参数自适应调整,实现PID控制器的最优控制,输出PID控制器,参数kp,ki,kd的收敛过程。

2.系统仿真结果

kp,ki,kd的收敛过程如下:

控制器输出如下:

参考输入和控制器反馈输出的误差如下:

3.核心程序与模型

版本:MATLAB2022a

4.系统原理简介

       自适应PID控制器是一种广泛应用于控制系统设计的先进策略。自适应PID控制器是一种基于比例-积分-微分(PID)控制策略的自适应控制方法。它通过对系统性能进行实时监测,自动调整PID控制器的参数,以实现优化控制性能。自适应PID控制器能够应对系统参数变化、外部扰动等不确定性因素,保持系统稳定并达到预设性能指标。

        自适应PID控制器的数学表达式如下:

        u(t) = Kp(t) * e(t) + Ki(t) ∫e(t) dt + Kd(t) * de(t)/dt

        其中,u(t)是控制器输出,e(t)是误差信号,Kp(t)、Ki(t)和Kd(t)分别是比例、积分和微分系数。这三个系数决定了控制器的性能和稳定性。

        在自适应PID控制器中,Kp(t)、Ki(t)和Kd(t)是根据系统性能实时调整的。调整策略可以基于各种优化算法,如梯度下降法、遗传算法、粒子群算法等。通过在线辨识系统参数和性能指标,自适应PID控制器能够自动调整PID参数,实现控制器性能的优化。

       自适应PID控制器的核心是自适应性原理。它根据控制系统性能指标的实时反馈,动态地调整PID控制器的参数。这种自适应性使得控制器能够应对各种不确定性因素,如系统参数变化、外部扰动等,保持系统稳定和优良性能。

       参数调整策略是自适应PID控制器的关键。根据控制系统的特性和需求,可以选择不同的优化算法来调整PID参数。例如,梯度下降法通过计算误差梯度来更新参数,遗传算法通过模拟自然进化过程来搜索最优参数,粒子群算法通过模拟鸟群觅食行为来寻找最优解。这些算法在自适应PID控制器中发挥着重要作用,使得控制器能够根据系统变化实时调整参数,实现最优控制。

5.完整工程文件

v

v

Fuzzysimulink有关模糊PID问题概述-自适应模糊PID.rar 最近很多人问我关于模糊PID的问题,我就把模糊PID的问题综合了一下,希望对大家有所帮助。 一、模糊PID就是指自适应模糊PID吗? 不是,通常模糊控制和PID控制结合的方式有以下几种: 1、大误差范围内采用模糊控制,小误差范围内转换成PID控制的模糊PID开关切换控制。 2、PID控制模糊控制并联而成的混合型模糊PID控制。 3、利用模糊控制器在线整定PID控制器参数自适应模糊PID控制。 一般用1和3比较多,MATLAB自带的水箱液位控制tank采用的就是开关切换控制。由于自适应模糊PID控制效果更加良好,而且大多数人选用自适应模糊PID控制器,所以在这里主要指自适应模糊PID控制器。 二、自适应模糊PID的概念 根据PID控制器的三个参数偏差e和偏差的变化ec之间的模糊关系,在运行时不断检测e及ec,通过事先确定的关系,利用模糊推理的方法,在线修改PID控制器的三个参数,让PID参数可自整定。就我的理解而言,它最终还是一个PID控制器,但是因为参数可自动调整的缘故,所以也能解决不少一般的非线性问题,但是假如系统的非线性、不确定性很严重时,那模糊PID的控制效果就会不理想啦。 三、模糊PID控制规则是怎么定的? 这个控制规则当然很重要,一般经验: 当e较大时,为使系统具有较好的跟踪性能,应取较大的Kp较小的Kd,同时为避免系统响应出现较大的超调,应对积分作用加以限制,通常取Ki=0。 当e处于中等大小时,为使系统响应具有较小的超调,Kp应取得小些。在这种情况下,Kd的取值对系统响应的影响较大,Ki的取值要适当。 当e较小时,为使系统具有较好的稳定性能,KpKi均应取得大些,同时为避免系统在设定值附近出现振荡,Kd值的选择根据|ec|值较大时,Kd取较小值,通常Kd为中等大小。 另外主要还得根据系统本身的特性和你自己的经验来整定,当然你先得弄明白PID三个参数Kp,Ki,Kd各自的作用,尤其对于你控制的这个系统。 四、量化因子Ke,Kec,Ku该如何确定? 有个一般的公式:Ke=n/e,Kec=m/ec,Ku=u/l。n,m,l分别为Ke,Kec,Ku的量化等级,一般可取6或7。e,ec,u分别为误差,误差变化率,控制输出的论域。不过通过我实际的调试,有时候这些公式并不好使。所以我一般都采用凑试法,根据你的经验,先确定Ku,这个直接关系着你的输出是发散的还是收敛的。再确定Ke,这个直接关系着输出的稳态误差响应。最后确定Kec,前面两个参数确定好了,这个应该也不会难了。 五、在仿真的时候会出现刚开始仿真的时候时间进度很慢,从e-10次方等等开始,该怎么解决? 这时候肯定会有许多人跳出来说是步长的问题,等你改完步长,能运行了,一看结果,惨不忍睹!我只能说这个情况有可能是你的参数有错误,但如果各项参数是正确的前提下,你可以在方框图里面加饱和输出模块或者改变阶跃信号的sample time,让不从0开始或者加个延迟模块或者加零阶保持器看看…… 六、仿真到一半的时候仿真不动了是什么原因? 仿真图形很有可能发散了,加个零阶保持器,饱和输出模块看看效果。改变Ke,Kec,Ku的参数。 七、仿真图形怎么反了? 把Ku里面的参数改变一下符号,比如说从正变为负。模糊PID的话改变Kp的就可以。 八、还有人问我为什么有的自适应模糊PID里有相加的模块而有的没有? 相加的是PID的初值相加。最后出来的各项参数Kp=△Kp Kp0,Ki=△Ki Ki0,Kd=△Kd Kd0。Kp0,Ki0,Kd0分别为PID的初值。有的系统并没有设定PID的初值。 九、我照着论文搭建的,什么都是正确的,为什么最后就是结果不对? 你修改下参数或者重新搭建一遍。哪一点出了点小问题,都有可能导致失败。 …… 大家还有什么问题就在帖子后面留言哈,如果模型实在是搭建不成功的话可以给我看看,大家有问题一起解决!附件里面是两个自适应模糊PID的程序,大家可以参考下! 所含文件: Figure38.jpg simulink有关模糊PID问题概述 结构图: Figure39.jpg simulink有关模糊PID问题概述 Figure40.jpg simulink有关模糊PID问题概述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

可编程芯片开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值