Qwen2一键整合包

地址链接:https://pan.baidu.com/s/1PBUyaltIzvu7bqCuaMelxQ?pwd=5uqk 
提取码:5uqk 

1、解压后文件

2、带两个模型

3、启动后

4、点击“AI Chat”,然后选个适合自己电脑的模型即可使用了。

5、使用中是效果

### 如何集成 Dify 和 Ollama 为了实现 Dify 与 Ollama 的整合,需先确保 Docker 环境已安装并配置好。接着按照如下说明操作: #### 安装和启动 Ollama Ollama 提供了一键部署的方式用于启动大型语言模型,如 Llama 2, Mistral, 或者其他支持的模型。通过命令行工具下载并运行 Ollama。 ```bash docker pull ollama/ollama:latest docker run --name ollama -p 8000:8000 ollama/ollama:latest ``` 这会拉取最新的 Ollama 映像文件,并将其作为名为 `ollama` 的容器启动,在主机上监听端口 8000[^2]。 #### 设置 Dify 连接至 Ollama Dify 可以连接到由 Ollama 启动的服务来执行推理任务以及获取嵌入向量的能力。为此,需要调整 Dify 的配置参数指向本地运行的 Ollama API 地址。 编辑或创建 `.env` 文件于项目根目录下,加入下列环境变量定义: ```ini OLLAMA_API_URL=http://localhost:8000/api/v1/models/ ``` 此设置告知 Dify 使用位于 localhost 上并通过指定端口号提供服务的 Ollama 实例进行交互[^1]。 #### 测试集成效果 完成上述步骤之后,可以通过调用 Dify 接口中涉及大模型的功能来进行测试。比如发起一次简单的查询请求给已经加载好的 deepseek、llama 或 qwen 模型之一,验证两者之间的通信是否正常工作。 ```python from dify import Client client = Client() response = client.query("你好世界") print(response.text) ``` 这段 Python 代码展示了如何利用 Dify SDK 发送一条消息给选定的语言模型,并打印返回的结果字符串。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值