叉乘怎么记忆,计算

本文通过一个直观的例子解释了向量的叉乘概念,强调了叉乘结果的三个分量与i, j, k单位向量的关系,以及系数的确定方法。向量叉乘可以看作是建立在行列式的计算基础上,行列式的第一行由i, j, k组成,第二行和第三行分别表示两个向量。通过对行列式的计算,可以得到叉乘向量的各个分量,从而理解这一三维空间中的运算。
摘要由CSDN通过智能技术生成

以一个例子直观记忆叉乘:

 

引用自——向量积_百度百科 (baidu.com) 

在这个式子中,我们可以清楚地看到三项分别是i,j,k。前面则是他们的系数。我们可以直接把i,j,k看成是x,y,z(只是看成,但其实他们是xyz轴上的单位向量)。每一项前面的系数和ijk分别对应,若是后边是i,则前面无a_x, b_x, c_x,也就是没有x。同理j前面没有y,k前面没有z。至于每一项的系数是谁减谁,则要根据下面写成的行列式来看,

 

这个行列式第一行写i,j,k 。

第二行写乘积前面地那个向量,最后写后边的向量。

行列式如何计算呢?

这就是向量的叉乘。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值