真正的红牌给了意大利!!!

http://2006.sina.com.cn/bbs/2006/0710/07001411.html

我是个纯粹的德迷,怀着尴尬和复杂的心情看完了决赛。

前20分钟,我以为一场精彩的比赛已经拉开大幕,我期待,我并不支持谁,因为德国队已经离开。

可整整110分钟,我确实看到了精彩的比赛,但看到的只是法国的精彩,这个时候我还没有倾向。在我心目中,意大利,因为格罗索,那个“伟大的左后卫”,那个“马尔蒂尼附身的左后卫”,那个7月5号被我骂了一天的左后卫,甚至做梦都在骂...但此刻我对他是尊重,那脚球真的很漂亮;法国,因为有齐达内,那个将在这一场伟大的比赛中谢幕的球王。
第111分钟,我开始倾向了法国,我甚至说出了六个字“丑陋的意大利”,意迷不要不高兴,这跟你们赢德国没关系,真的就是那一瞬间我下意识说出的六个字,我相信很多中立球迷口中吐出了同样的话!和我一同看球的也有很多意迷,当主裁判埃利松多掏出红牌的那一瞬间,都沉默了,我知道他们在想什么,红牌其实是给了意大利,给了整个意大利足球,给了为“电话门”已经落魄不堪的意大利人。不知道,看这文章的意迷,你是怎么想的?不要跟我说马特拉齐说的不一定是什么侮辱性的话,全世界没几个人会相信!不要跟我说没什么彻底证据之前不要乱猜,不要跟我说不要因为齐达内伟大所以马特拉齐无论说什么都有罪这样的话,全世界不会有同情!那一瞬间,所有中立球迷给意大利的只有仇恨。有人早就说过:“马特拉齐是一颗定时炸弹,随时爆炸”
当然,很高兴,有一个人一直在为你们说话,一直在掩饰着柏林球场的嘘声,一直在掩饰6万人的愤怒。“齐达内将为这个错误而付出代价”“怎么也不会想到球王会以这种方式谢幕”“当他平静下来的时候,应该会为自己的行为对队友感到愧疚”这些话是可以理解的,因为他只是掩饰。下面的话可能就真的有点问题了,先说明,我先前是喜欢黄建翔的,他解说冷静而富有幽默。对“意澳解说事件” 我曾认为只是个人行为,过于激动罢了。但今天我终于领教到了他的精彩解说:
“上帝给了球王无与伦比的球技,却没给他脑袋”---可能后面该补充点什么,但他没有!
“不知道马特拉齐对齐达内做了什么,如果只是用嘴说的话,那么这些话一定是很高明的”---我清楚的记得当他说出“高明”这个词的时候用的赞赏的语态。或许他还是应该补充点什么,但他没有。
“齐达内是伟大的球员,他主宰了整场比赛,他本可以获得金球奖”---不要为这段话有什么感想,这是张路,张指导一直压着黄激动的心情说的一句话,他只是跟着说了一句而已,而那个时候他的心情是因为意大利获得冠军已经如付释重。
我不想评论他,或许我已经评论了,对他,我现在的心情只能是无语...曾经优秀的解说员...
怀着已经倾斜的心情,我想说的还是那句111分钟时我发自肺腑的话“丑陋”,丑陋的不仅仅是马特拉齐,我想起了德意大战中进球后的皮耶罗,是的,我想起了他,那“潇洒”的奔跑,我厌恶!!我想丑陋的是整个意大利足球,这是我对意大利足球的担忧,但你们为德国足球提出自己担忧的时候,我现在也真诚的给你我的感受,我不知道国际足联会怎么处理这件事情,无疑,冠军是你们的了,祝贺你们!
但不要忘了,今天的红牌是给了你们意大利,而不是打出那一记精彩“秃之顶”的齐达内,不要忘了,现在的意大利足球,正在遭受数以亿记的球迷的谴责,不要忘了,“丑陋”两个已经深深地写在很多球迷的心里。 
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值