LinearRegression,RidgeCV,LassoCV,ElasticNetCV各自使用场景

#!/usr/bin/python
# -*- coding:utf-8 -*-

import numpy as np
from sklearn.linear_model import LinearRegression, RidgeCV, LassoCV, ElasticNetCV
from sklearn.preprocessing import PolynomialFeatures
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
import matplotlib as mpl
import warnings

def xss(y, y_hat):
    y = y.ravel()
    y_hat = y_hat.ravel()
    # Version 1
    tss = ((y - np.average(y)) ** 2).sum()
    rss = ((y_hat - y) ** 2).sum()
    ess = ((y_hat - np.average(y)) ** 2).sum()
    r2 = 1 - rss / tss
    # print 'RSS:', rss, '\t ESS:', ess
    # print 'TSS:', tss, 'RSS + ESS = ', rss + ess
    tss_list.append(tss)
    rss_list.append(rss)
    ess_list.append(ess)
    ess_rss_list.append(rss + ess)
    # Version 2
    # tss = np.var(y)
    # rss = np.average((y_hat - y) ** 2)
    # r2 = 1 - rss / tss
    corr_coef = np.corrcoef(y, y_hat)[0, 1]
    return r2, corr_coef


if __name__ == "__main__":
    warnings.filterwarnings("ignore")   # ConvergenceWarning
    np.random.seed(0)
    np.set_printoptions(linewidth=1000)
    N = 9
    x = np.linspace(0, 6, N) + np.random.randn(N)
    x = np.sort(x)
    y = x**2 - 4*x - 3 + np.random.randn(N)
    x.shape = -1, 1
    y.shape = -1, 1

    print '--'
    #形如 1.00000000e+02  表示1.000*10^2 即1.00乘以10的2次幂
    print np.logspace(-3, 2, 5)
    print np.logspace(-2, 9, 5)
    print np.logspace(0, 0, 5)
    print np.logspace(0, 1, 5)
    print '--'

    #线性回归的目的是要得到输出向量Y和输入特征X之间的线性关系,求出线性回归系数θ,也就是Y=Xθ,
    #其中Y的维度为mx1,X的维度为mxn,而θ的维度为nx1,m代表样本个数,n代表样本特征的维度

    #损失函数:损失函数是用来评价模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数 通常用L(Y,f(x))表示,损失函数越小,模型的性能就越好
    #正则化项:为了防止损失函数过拟合的问题,一般会在损失函数中加上正则化项,增加模型的泛化能力
    models = [Pipeline([
        ('poly', PolynomialFeatures()),
        #损失函数:J(θ)=1/2(Xθ−Y)T(Xθ−Y) 优化方法:梯度下降和最小二乘法,scikit中采用最小二乘
        #使用场景:只要数据线性相关,LinearRegression是我们的首选,如果发现拟合或者预测的不够好,再考虑其他的线性回归库
        ('linear', LinearRegression(fit_intercept=False))]),
        #Ridge回归(岭回归)损失函数的表达形式:J(θ)=1/2(Xθ−Y)T(Xθ−Y)+1/2α||θ||22(线性回归LineaRegression的损失函数+L2(2范式的正则化项))
        #a为超参数 alphas=np.logspace(-3, 2, 50) 从给定的超参数a中选择一个最优的,logspace用于创建等比数列 本例中 开始点为10的-3次幂,结束点10的2次幂,元素个数为
        #50,并且从这50个数中选择一个最优的超参数
        #linspace创建等差数列
        #Ridge回归中超参数a和回归系数θ的关系,a越大,正则项惩罚的就越厉害,得到的回归系数θ就越小,最终趋近与0
        #如果a越小,即正则化项越小,那么回归系数θ就越来越接近于普通的线性回归系数

        #使用场景:只要数据线性相关,用LinearRegression拟合的不是很好,需要正则化,可以考虑使用RidgeCV回归,
        #如何输入特征的维度很高,而且是稀疏线性关系的话, RidgeCV就不太合适,考虑使用Lasso回归类家族
        Pipeline([
            ('poly', PolynomialFeatures()),
            ('linear', RidgeCV(alphas=np.logspace(-3, 2, 50), fit_intercept=False))]),
        Pipeline([
            ('poly', PolynomialFeatures()),
            #损失函数:J(θ)=1/2m(Xθ−Y)T(Xθ−Y)+α||θ||1 线性回归LineaRegression的损失函数+L1(1范式的正则化项))
            #Lasso回归可以使得一些特征的系数变小,甚至还使一些绝对值较小的系数直接变为0,从而增强模型的泛化能力
            #使用场景:对于高纬的特征数据,尤其是线性关系是稀疏的,就采用Lasso回归,或者是要在一堆特征里面找出主要的特征,那么
            #Lasso回归更是首选了
            ('linear', LassoCV(alphas=np.logspace(-3, 2, 50), fit_intercept=False))]),
        Pipeline([
            ('poly', PolynomialFeatures()),
            #损失函数:J(θ)=1/2m(Xθ−Y)T(Xθ−Y)+αρ||θ||1+α(1−ρ)/2||θ||22  其中α为正则化超参数,ρ为范数权重超参数
            #alphas=np.logspace(-3, 2, 50), l1_ratio=[.1, .5, .7, .9, .95, .99, 1] ElasticNetCV会从中选出最优的 a和p
            #ElasticNetCV类对超参数a和p使用交叉验证,帮助我们选择合适的a和p
            #使用场景:ElasticNetCV类在我们发现用Lasso回归太过(太多特征被稀疏为0),而Ridge回归也正则化的不够(回归系数衰减太慢)的时候
            ('linear', ElasticNetCV(alphas=np.logspace(-3, 2, 50), l1_ratio=[.1, .5, .7, .9, .95, .99, 1],
                                    fit_intercept=False))])
    ]
    mpl.rcParams['font.sans-serif'] = [u'simHei']
    mpl.rcParams['axes.unicode_minus'] = False
    np.set_printoptions(suppress=True)

    plt.figure(figsize=(18, 12), facecolor='w')
    d_pool = np.arange(1, N, 1)  # 阶
    m = d_pool.size
    clrs = []  # 颜色
    for c in np.linspace(16711680, 255, m):
        clrs.append('#%06x' % c)
    line_width = np.linspace(5, 2, m)
    titles = u'线性回归', u'Ridge回归', u'LASSO', u'ElasticNet'
    tss_list = []
    rss_list = []
    ess_list = []
    ess_rss_list = []
    for t in range(4):
        model = models[t]
        plt.subplot(2, 2, t+1)
        plt.plot(x, y, 'ro', ms=10, zorder=N)
        for i, d in enumerate(d_pool):
            model.set_params(poly__degree=d)
            model.fit(x, y.ravel())
            lin = model.get_params('linear')['linear']
            output = u'%s:%d阶,系数为:' % (titles[t], d)
            if hasattr(lin, 'alpha_'):
                idx = output.find(u'系数')
                output = output[:idx] + (u'alpha=%.6f,' % lin.alpha_) + output[idx:]
            if hasattr(lin, 'l1_ratio_'):   # 根据交叉验证结果,从输入l1_ratio(list)中选择的最优l1_ratio_(float)
                idx = output.find(u'系数')
                output = output[:idx] + (u'l1_ratio=%.6f,' % lin.l1_ratio_) + output[idx:]
            print output, lin.coef_.ravel()
            x_hat = np.linspace(x.min(), x.max(), num=100)
            x_hat.shape = -1, 1
            y_hat = model.predict(x_hat)
            s = model.score(x, y)
            r2, corr_coef = xss(y, model.predict(x))
            # print 'R2和相关系数:', r2, corr_coef
            # print 'R2:', s, '\n'
            z = N - 1 if (d == 2) else 0
            label = u'%d阶,$R^2$=%.3f' % (d, s)
            if hasattr(lin, 'l1_ratio_'):
                label += u',L1 ratio=%.2f' % lin.l1_ratio_
            plt.plot(x_hat, y_hat, color=clrs[i], lw=line_width[i], alpha=0.75, label=label, zorder=z)
        plt.legend(loc='upper left')
        plt.grid(True)
        plt.title(titles[t], fontsize=18)
        plt.xlabel('X', fontsize=16)
        plt.ylabel('Y', fontsize=16)
    plt.tight_layout(1, rect=(0, 0, 1, 0.95))
    plt.suptitle(u'多项式曲线拟合比较', fontsize=22)
    plt.show()

    y_max = max(max(tss_list), max(ess_rss_list)) * 1.05
    plt.figure(figsize=(9, 7), facecolor='w')
    t = np.arange(len(tss_list))
    plt.plot(t, tss_list, 'ro-', lw=2, label=u'TSS(Total Sum of Squares)')
    plt.plot(t, ess_list, 'mo-', lw=1, label=u'ESS(Explained Sum of Squares)')
    plt.plot(t, rss_list, 'bo-', lw=1, label=u'RSS(Residual Sum of Squares)')
    plt.plot(t, ess_rss_list, 'go-', lw=2, label=u'ESS+RSS')
    plt.ylim((0, y_max))
    plt.legend(loc='center right')
    plt.xlabel(u'实验:线性回归/Ridge/LASSO/Elastic Net', fontsize=15)
    plt.ylabel(u'XSS值', fontsize=15)
    plt.title(u'总平方和TSS=?', fontsize=18)
    plt.grid(True)
    plt.show()

参考资料:

scikit-learn 线性回归算法库小结
http://www.cnblogs.com/pinard/p/6026343.htm


线性回归原理小结
http://www.cnblogs.com/pinard/p/6004041.html


最小二乘法小结
http://www.cnblogs.com/pinard/p/5976811.html


梯度下降(Gradient Descent)小结
http://www.cnblogs.com/pinard/p/5970503.html

  • 1
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值