基于深度强化学习的联想电脑制造调度(Lenovo Schedules Laptop Manufacturing Using Deep Reinforcement Learning)

本文介绍了联想采用深度强化学习架构的决策支持平台替代手动生产调度,解决了大规模制造调度问题,实现了生产效率提升和成本降低。研究显示,使用新模型后,生产订单积压减少20%,交付率提升23%,调度时间从6小时缩短至30分钟,同时增加了多目标优化的灵活性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

获取更多资讯,赶快关注上面的公众号吧!

文章目录

    • 摘要
    • 背景介绍
    • 传统方法无法解决现有挑战
    • 解决方案
    • 提升模型表达能力
    • 针对复杂约束的掩码机制
    • 快速模型训练
    • 配置多目标调度优化
    • 结论

该研究成果,发表于运筹学顶刊《INFORMS JOURNAL ON APPLIED ANALYTICS》,首次将深度强化学习落地于大规模制造调度场景,该先进排程项目入围国际运筹学权威机构INFORMS运筹学应用最高奖——Franz Edelman Award,并作为制造业企业技术转型典型案例被人民日报等多家媒体广泛报道。


摘要

  联想研究院与联想最大电脑制造工厂联宝科技LCFC的运营组成员合作,采用基于深度强化学习架构的决策支持平台替代传统的手动生产调度。该系统可以调度工厂内所有43条装配制造线的生产订单,均衡产量、换型成本和订单交付率的相对优先级,利用深度强化学习模型求解多目标调度问题。该方法将高计算效率与一种新的掩码机制相结合以保证运行约束,从而避免机器学习模型将时间浪费在探索不可行解。通过使用该新模型,改变了原有的生产管理流程,使得生产订单积压减少了20%交付率提升了23%。还将整个调度过程从6小时缩短到30分钟,与此同时保留了多目标的灵活性,使工厂能够快速调整以适应不断变化的目标。该项研究工作在2019年和202年分别为工厂提升了19.1亿美元26.9亿美元的收入。

背景介绍

  联想合肥工厂LCFC是联想最大的电脑制造厂,其有4个制造工厂和43条装配生产线,平均每天大约接收5000个电脑订单,占据联想电脑生产的一多半和至少全球电脑的八分之一。这些电脑包含20多个产品系列550个产品型号。在生产之前,这些订单会被分解成生产工单(MO),一个订单可包含数千台电脑,每个工单中的电脑具有相同的型号和相近的承诺发货日期。

  电脑生产过程大致可以分为三个阶段:

  • 第一阶段:主板的生产由表面装配技术车间负责。这一阶段,生产以自动执行为主,稳定性高,不需要人为干预;
  • 组件车间完成生产的第二阶段,工人们将笔记本电脑的外壳与显示器和键盘连接起来;
  • 第三阶段即装配阶段,组装笔记本电脑的内部部件。这一阶段最耗时和最不稳定,需要大量的人工干预,因此该阶段的效率通常是整个制造过程的瓶颈

  第三阶段,根据工单将半成品和备件分配到43条产线,在这些产线上,工人依次处理每个工单,即当前工单完成装配后下一工单才能开始。特定电脑型号的组装效率可能因分配的生产线的不同而有所不同。每小时的产出(Unit-per-hour,UPH)矩阵表达了产品与产线的对应效率。UPH很容易受员工出勤率波动、生产线的机器状态以及工具和材料的可用性影响而变化。每个工单对应一个工件,如图1所示,工单4从产线B移动到产线A,因为UPH变大,所以生产时间变短。而且,工单在每条产线上的排序会严重影响总生产时间。

  当产线切换生产不同的型号时,会导致换型成本,通过合理的工单分派可以提升调度性能。考虑到生产线的数量和调度订单量,优化问题在计算上很难解决。因此第三阶段的装配段管理是所有联想工厂生产管理的重点和最具挑战性的部分。

传统方法无法解决现有挑战

  在联想,基于人类经验和判断的生产调度需要数小时的工作时间。由于生产资源供应的波动性,当今现代制造业企业面临着巨大的压力。因此,联想需要一个具有以下特点的生产管理系统:

  1. 能够解决大规模调度问题。对于联想这样生产越来越复杂的企业来说,一个工厂必须能够每天处理多达数万个订单;
  2. 快速反应能力。供应端的波动性要求生产调度系统快速响应组件供应的变化。联想之前的调度流程,是基于计划人员的经验和判断,无法及时、充分地应对供应端的变化;
  3. 更优的KPI绩效。可以同时优化总产量、订单交付率、换型成本等;
  4. 多标准优化目标的灵活配置能力。从机械工作中解放出来后,计划人员有更多的时间进行战略工作。他们可以通过与系统交互,积极参与决策过程;例如,他们可以配置KPI阈值和设置优化目标的相对优先级(权重)。这对于建立规划人员对系统的信任至关重要,通过该工作流程提高他们的工作满意度,并提高调度过程的效率。

  传统方法很难满足这样的需求。传统方法分为精确方法近似方法。精确方法如分支定界和割平面法,追求全局最优解,仅限于解决小规模问题。为了解决大规模问题,传统的解决方案开发人员通过基于规则或启发式的方法来寻求近似最优解。但是,有些近似方法如禁忌搜索/路径重链接在中小规模问题集上表现良好,但在解决大规模问题时往往太慢,无法满足快速响应时间的需求。其他可以在合理时间内解决大型和小规模问题的近似方法通常在KPI优化方面表现不佳。在处理多目标优化问题时,响应速度和解决方案质量之间的冲突比使用传统方法时更加明显。综上所述,传统方法的这些缺陷给联想供应链管理带来了相当大的挑战。

解决方案

  为了应对这些挑战,将**生产线计划问题(production line planning problem,PLPP)**问题建模为马尔科夫决策过程(MDP)。

  假设一个工厂具有 K K K条产线和 N N N个工单,该生产调度问题对应的MDP可以表示为 { X t , A , P , R } \left\{\mathbf{X}_{\mathbf{t}}, \mathbf{A}, \mathbf{P}, \mathbf{R}\right\} { Xt,A,P,R}

其中:

X t \mathbf{X}_{\mathbf{t}} X

<think>嗯,用户想了解如何使用深度学习技术进行邮件分类,尤其是垃圾邮件的分类。我之前已经处理过基于朴素贝叶斯的分类系统,现在需要转向深度学习方法。首先,我需要回忆一下深度学习的常见模型和它们在文本分类中的应用。 用户的问题提到了“深度学习邮件分类模型实现”,所以需要覆盖数据准备、模型选择、训练流程、优化方法等步骤。根据引用[1]中的传统方法,数据预处理步骤可能类似,比如分词、去停用词等,但深度学习可能需要不同的特征提取方式,比如词嵌入或者预训练模型。 接下来,模型选择方面,常见的深度学习模型有CNN、RNN、LSTM,还有Transformer架构的模型,比如BERT。需要比较这些模型的优缺点,例如CNN在捕捉局部特征上的优势,而BERT在理解上下文方面更好。同时,用户可能对实现步骤感兴趣,需要给出一个具体的例子,比如使用TensorFlow或PyTorch搭建模型。 还需要考虑数据预处理的不同之处,比如是否使用词向量预训练,是否需要处理变长文本,以及如何处理类别不平衡的问题。例如,垃圾邮件可能比正常邮件少,可能需要过采样或其他方法。 然后,评估指标方面,除了准确率,可能还需要召回率和F1值,特别是当数据不平衡时。引用[1]提到了这些指标,所以在深度学习中同样重要。 另外,用户可能对深度学习与传统方法(如朴素贝叶斯)的区别感兴趣,比如为什么深度学习效果更好,或者需要更多的数据。需要解释深度学习的优势,比如自动特征提取、处理复杂模式的能力。 最后,代码示例部分,需要提供一个简单的深度学习模型代码,可能用Keras实现一个LSTM模型或者使用Hugging Face的Transformers库加载预训练模型。同时,要确保代码示例正确,并解释关键步骤,比如模型结构、编译、训练和评估。 可能还需要提到一些优化技巧,比如早停法、学习率调整,或者数据增强的方法,比如同义词替换来增加训练数据。此外,分布式训练和GPU加速可能也是用户关心的问题,特别是在处理大规模数据时。 总结一下,回答的结构应该是:数据预处理、模型构建、训练与调优、评估指标、代码示例,以及与传统方法的对比。同时,生成的相关问题需要引导用户进一步探索,比如数据增强方法、预训练模型的应用、处理不平衡数据的策略等。</think>### 深度学习邮件分类模型实现步骤 #### 1. **数据预处理(与传统方法差异)** - **文本清洗**:去除HTML标签、特殊符号、小写化(如`re.sub('<.*?>', '', text)`) - **分词与编码**:使用深度学习专用工具(如`spaCy`分词、`WordPiece`子词切分) - **向量化**:采用预训练词向量(如GloVe、Word2Vec)或动态嵌入层 - **序列填充**:统一文本长度(例如`pad_sequences`处理变长文本) #### 2. **模型选择与构建** **基础模型示例(LSTM+Attention)**: ```python from tensorflow.keras import layers, models model = models.Sequential([ layers.Embedding(input_dim=10000, output_dim=128), layers.Bidirectional(layers.LSTM(64, return_sequences=True)), layers.Attention(), layers.Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ``` **进阶方案**: - **预训练语言模型**:使用BERT微调(Hugging Face库) ```python from transformers import TFBertForSequenceClassification model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) ``` #### 3. **训练与调优** - **数据增强**:同义词替换(TextAttack工具)、回译增强 - **优化技巧**: ```python # 学习率调度示例 lr_scheduler = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=1e-3, decay_steps=1000, decay_rate=0.9) ``` - **早停机制**:`EarlyStopping(monitor='val_loss', patience=3)` #### 4. **评估指标** - 重点关注**召回率**(避免漏判垃圾邮件) - 使用混淆矩阵和ROC曲线分析 - 对比传统方法:深度学习在长文本、语义复杂场景表现更优[^1] #### 5. **与传统方法对比** | 维度 | 朴素贝叶斯 | 深度学习模型 | |--------------|---------------------------|---------------------------| | 特征工程 | 需要手动设计 | 自动特征提取 | | 数据需求 | 小样本有效 | 需要大量标注数据 | | 上下文理解 | 独立假设限制 | 可捕捉长距离依赖 | | 硬件要求 | CPU即可运行 | 需要GPU加速 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松间沙路hba

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值