Hölder不等式,Minkowski不等式及其一种证明方法

本文介绍了Holder不等式和Minkowski不等式,包括它们在积分和级数形式的表现,并详细展示了使用积分形式证明Holder不等式的过程。通过对Holder不等式的应用,进一步导出了Minkowski不等式,证明了加法性质在Lp空间中的有效性。
摘要由CSDN通过智能技术生成

Hölder 不等式

  Let 1 < p , q < ∞ ,   1 p + 1 q = 1 1<p,q<\infty,\text{ }\frac{1}{p}+\frac{1}{q}=1 1<p,q<, p1+q1=1.

Form of Integral
   f ∈ L p [ a , b ] ,   g ∈ L q [ a , b ] f\in { {L}^{p}}\left[ a,b \right],\text{ }g\in { {L}^{q}}\left[ a,b \right] fLp[a,b], gLq[a,b], then:

  • f ( x ) g ( x ) ∈ L 1 [ a , b ] f\left( x \right)g\left( x \right)\in { {L}^{1}}\left[ a,b \right] f(x)g(x)L1[a,b]
  • ∫ a b ∣ f ( x ) g ( x ) ∣ d x ≤ ( ∫ a b ∣ f ( x ) ∣ p d x ) 1 p ( ∫ a b ∣ g ( x ) ∣ q d x ) 1 q \int_{a}^{b}{\left| f\left( x \right)g\left( x \right) \right|dx}\le { {\left( \int_{a}^{b}{ { {\left| f\left( x \right) \right|}^{p}}dx} \right)}^{\frac{1}{p}}}{ {\left( \int_{a}^{b}{ { {\left| g\left( x \right) \right|}^{q}}dx} \right)}^{\frac{1}{q}}} abf(x)g(x)dx(abf(x)pdx)p1(abg(x)qdx)q1
    or ∥ f g ∥ 1 ≤ ∥ f ∥ p ∥ g ∥ q { {\left\| fg \right\|}_{1}}\le { {\left\| f \right\|}_{p}}{ {\left\| g \right\|}_{q}} fg1fpgq

Form of Series
   x = { x k } ∈ l p ,   y = { y k } ∈ l q x=\left\{ { {x}_{k}} \right\}\in { {l}^{p}},\text{ }y=\left\{ { {y}_{k}} \right\}\in { {l}^{q}} x={ xk}lp, y={ yk}lq, then

  • z = { x k y k } ∈ l 1 z=\left\{ { {x}_{k}}{ {y}_{k}} \right\}\in { {l}^{1}} z={ xkyk}l1
  • ∑ k = 1 ∞ ∣ x k y k ∣ ≤ ( ∑ k = 1 ∞ ∣ x k ∣ p ) 1 p ( ∑ k = 1 ∞ ∣ y k ∣ q ) 1 q \sum\limits_{k=1}^{\infty }{\left| { {x}_{k}}{ {y}_{k}} \right|}\le { {\left( \sum\limits_{k=1}^{\infty }{ { {\left| { {x}_{k}} \right|}^{p}}} \right)}^{\frac{1}{p}}}{ {\left( \sum\limits_{k=1}^{\infty }{ { {\left| { {y}_{k}} \right|}^{q}}} \right)}^{\frac{1}{q}}} k=1xkyk(k=1xkp)p1(k=1ykq)q1
    or ∥ x y ∥ 1 ≤ ∥ x ∥ p ∥ y ∥ q { {\left\| xy \right\|}_{1}}\le { {\left\| x \right\|}_{p}}{ {\left\| y \right\|}_{q}} xy1xpyq

Proof (Use Integral Form of an example)

  1. If ∥ f ∥ p = 0   ∨   ∥ g ∥ q = 0 { {\left\| f \right\|}_{p}}=0\text{ }\vee \text{ }{ {\left\| g \right\|}_{q}}=0 fp=0  gq=0 is true, the conclusion is obvious.
  2. Suppose ∥ f ∥ p > 0   &   ∥ g ∥ q > 0 { {\left\| f \right\|}_{p}}>0\text{ }\And \text{ }{ {\left\| g \right\|}_{q}}>0 fp>0 & gq>0. Let ϕ ( t ) = t 1 p ( t > 0 ) \phi \left( t \right)={ {t}^{\frac{1}{p}}}\left( t>0 \right) ϕ(t)=tp1(t>0).
    ϕ ′ ′ ( t ) = 1 p ( 1 p − 1 ) t 1 p − 2 < 0 ,   ∀ t > 0 \phi ''\left( t \right)=\frac{1}{p}\left( \frac{1}{p}-1 \right){ {t}^{\frac{1}{p}-2}}<0,\text{ }\forall t>0 ϕ(t)=p1(p11)tp12<0, t>0
    Hence ϕ \phi ϕ is concave and we have
      ϕ ( t 1 ) ≤ ϕ ( t 2 ) + ϕ ′ ( t 2 ) ( t 2 − t 1 ) ,   ∀ t 1 , t 2 > 0 ⇒ ϕ ( t ) ≤ ϕ ( 1 ) + ϕ ′ ( 1 ) ( t − 1 )   ( L e t   t = t 1 ,   t 2 = 1 ) ⇒ t 1 p ≤ 1 + t − 1 p = t p + 1 q   ( 1 ) \begin{aligned} & \text{ }\phi \left( { {t}_{1}} \right)\le \phi \left( { {t}_{2}} \right)+\phi '\left( { {t}_{2}} \right)\left( { {t}_{2}}-{ {t}_{1}} \right),\text{ }\forall { {t}_{1}},{ {t}_{2}}>0 \\ & \Rightarrow \phi \left( t \right)\le \phi \left( 1 \right)+\phi '\left( 1 \right)\left( t-1 \right)\text{ }\left( Let\text{ }t={ {t}_{1}},\text{ }{ {t}_{2}}=1 \right) \\ & \Rightarrow { {t}^{\frac{1}{p}}}\le 1+\frac{t-1}{p}=\frac{t}{p}+\frac{1}{q}\text{ }\left( 1 \right) \\ \end{aligned}  ϕ(t1)ϕ(t2)+ϕ(t2)(t
  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值