2021-05-19 Schur补引理及证明

Definition 1

Definition 1. Consider the partitioned matrix
A = [ A 11 A 12 A 21 A 22 ] A=\left[\begin{array}{ll} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right] A=[A11A21A12A22]

  1. When A 11 A_{11} A11 is nonsingular, A 22 − A 21 A 11 − 1 A 12 A_{22}-A_{21} A_{11}^{-1} A_{12} A22A21A111A12 is called the Schur complement of A 11 A_{11} A11 in A A A, denoted by S c h ( A 11 ) S_{c h}\left(A_{11}\right) Sch(A11).
  2. When A 22 A_{22} A22 is nonsingular, A 11 − A 12 A 22 − 1 A 21 A_{11}-A_{12} A_{22}^{-1} A_{21} A11A12A221A21 is called the Schur complement of A 22 A_{22} A22 in A A A, denoted by S ch  ( A 22 ) S_{\text {ch }}\left(A_{22}\right) Sch (A22).

Lemma 1

Lemma 1. Let = e q \stackrel{eq}{=} =eq represent the equivalence relation between two matrices. Then for the partitioned matrix A A A the following conclusions hold.

  1. When A 11 A_{11} A11 is nonsingular, A = e q [ A 11 0 0 A 22 − A 21 A 11 − 1 A 12 ] = [ A 11 0 0 S c h ( A 11 ) ] A \stackrel{eq}{=}\left[\begin{array}{cc} A_{11} & 0 \\ 0 & A_{22}-A_{21} A_{11}^{-1} A_{12} \end{array}\right]=\left[\begin{array}{cc} A_{11} & 0 \\ 0 & S_{ch}\left(A_{11}\right) \end{array}\right] A=eq[A1100A22A21A111A12]=[A1100Sch(A11)] and hence A A A is nonsingular if and only if S c h ( A 11 ) S_{c h}\left(A_{11}\right) Sch(A11) is nonsingular, and det ⁡ A = det ⁡ A 11 det ⁡ S c h ( A 11 ) \operatorname{det} A=\operatorname{det} A_{11}\operatorname{det} S_{c h}\left(A_{11}\right) detA=detA11detSch(A11)
  2. When A 22 A_{22} A22 is nonsingular, A = e q [ A 11 − A 12 A 22 − 1 A 21 0 0 A 22 ] = [ S c h ( A 22 ) 0 0 A 22 ] A \stackrel{eq}{=}\left[\begin{array}{cc} A_{11}-A_{12} A_{22}^{-1} A_{21} & 0 \\ 0 & A_{22} \end{array}\right]=\left[\begin{array}{cc} S_{c h}\left(A_{22}\right) & 0 \\ 0 & A_{22} \end{array}\right] A=eq[A11A12A221A2100A22]=[Sch(A22)00A22] hence A A A is nonsingular if and only if S c h ( A 22 ) S_{c h}\left(A_{22}\right) Sch(A22) is nonsingular, and det ⁡ A = det ⁡ A 22 det ⁡ S c h ( A 22 ) \operatorname{det} A=\operatorname{det} A_{22}\operatorname{det} S_{c h}\left(A_{22}\right) detA=detA22detSch(A22).
    note: refer to https://blog.csdn.net/weixin_44382195/article/details/102991813 for the definition of the equivalence relation.

Lemma 2

Lemma 2. Given the matrices A 11 = A 11 T , A 22 = A 22 T A_{11}=A_{11}^{T}, A_{22}=A_{22}^{T} A11=A11T,A22=A22T and A 12 A_{12} A12 with appropriate dimensions. The following LMIs are equivalent:

  1. [ A 11 A 12 A 12 T A 22 ] ≻ 0 \left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12}^{T} & A_{22}\end{array}\right]\succ0 [A11A12TA12A22]0
  2. A 22 = A 22 T ≻ 0 ; A 11 − A 12 A 22 − 1 A 12 T ≻ 0 A_{22}=A_{22}^{T}\succ0 ; A_{11}-A_{12} A_{22}^{-1} A_{12}^{T}\succ0 A22=A22T0;A11A12A221A12T0
  3. A 11 = A 11 T ≻ 0 ; A 22 − A 12 T A 11 − 1 A 12 ≻ 0 A_{11}=A_{11}^{T}\succ0 ; A_{22}-A_{12}^{T} A_{11}^{-1} A_{12}\succ0 A11=A11T0;A22A12TA111A120.

Lemma 3

Lemma 3. Given the matrices A = A T , C = C T A=A^{T}, C=C^{T} A=AT,C=CT and B B B with appropriate dimensions. The following LMIs are equivalent:

  1. [ A 11 A 12 A 12 T A 22 ] ≺ 0 \left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12}^{T} & A_{22}\end{array}\right]\prec0 [A11A12TA12A22]0
  2. A 22 = A 22 T ≺ 0 ; A 11 − A 12 A 22 − 1 A 12 T ≺ 0 A_{22}=A_{22}^{T}\prec0 ; A_{11}-A_{12} A_{22}^{-1} A_{12}^{T}\prec0 A22=A22T0;A11A12A221A12T0
  3. A 11 = A 11 T ≺ 0 ; A 22 − A 12 T A 11 − 1 A 12 ≺ 0 A_{11}=A_{11}^{T}\prec0 ; A_{22}-A_{12}^{T} A_{11}^{-1} A_{12}\prec0 A11=A11T0;A22A12TA111A120.

具体分析过程是利用一次初等行变换和一次初等列变换(实际不需要列变换也行),然后得到块对角矩阵。正(负)定矩阵的对角块均为正(负)定矩阵。既可得到上述关系。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值