Gram matrix 格拉姆矩阵

Gram matrix 度量各个维度自己的特性以及各个维度之间的关系。

来自:https://www.zhihu.com/question/49805962?from=profile_question_cardv2-b72ead36f2277ff9032a9f6b43faa633_hd.jpg

由感知机(对偶感知机中需要计算样本点两两之间的内积和,并进行存储,这样想到的方式是Gram矩阵)因此,想了解什么是Gram matrix

老办法:知乎—>Google—>Papers

知乎:Gram matrix

度量各个维度自己的特性以及各个维度之间的关系。

当同一个维度上面的值相乘的时候原来越小就变得更小,原来越大就变得越大;二不同维度上的关系也在相乘的表达当中表示出来。

即通过相乘运算,它将特征之间的区别进行扩大或者缩小,主要在图像处理中应用。

v2-b72ead36f2277ff9032a9f6b43faa633_r.jpg200814_HHOC_1462678.png

Gram Matrix实际上可看做是feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵)

Google:

Gram矩阵的每个值代表i通道的feature map与j通道的feature map之间的互相关程度。

Gram矩阵和卷积网络中的卷积的差别

Gram矩阵是计算每个通道i的feature map与每个通道j的feature map的内积。自然就会得到C*C的矩阵。Gram矩阵的每个值可以说是代表i通道的feature map与j通道的feature map的互相关程度。而卷积网络的卷积其实也是互相关,具体情况见CNN基本问题 中的卷积到底是如何卷积的??。 值得注意的是:卷积网络的卷积和互相关是一样的,不是信号处理中所说的要先将卷积核旋转180再计算。

这句话没懂(这里只是强调互相关?),留着看到卷积网络的时候回来看

 

 

 

v2-b72ead36f2277ff9032a9f6b43faa633_hd.jpg

转载于:https://my.oschina.net/u/1462678/blog/1573598

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值