模板匹配(Template Match)
1、模板匹配概念;
2、API;
3、Code;
模板匹配(Template Match)
1、模板:一幅小的子图像,在大的图像(目标图像)中寻找与子图像相同或相似的部分,称为模板匹配;
2、模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域;
3、模板匹配首先需要一个模板图像T(给定的子图像),还需要一个待检测的图像(S),在待检测图像(Target Image)上,从左到右,从上到下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大;
模板匹配算法
OpenCV中提供了6种常见的匹配算法:
1、计算平方不同;越小,越匹配(0–完全匹配)
2、计算相关性(Correlation);越相关,值越大
3、计算相关系数;越大,越相似
4、计算归一化平方不同;
5、计算归一化相关性不同;(==1 , 完全相关)
6、计算归一化相关系数;
对应的宏定义
TM_SQDIFF : 计算平方不同
TM_SQDIFF_NORMED :计算归一化平方不同
TM_CCORR : 计算相关性
TM_CCORR_NORMED : 计算归一化相关性
TM_CCOEFF : 计算相关系数
TM_CCOEFF_NORMED : 计算归一化相关系数
相关API
1、模板匹配API : matchTemplate()
参数说明:
image : 源图像,必须是8bit或32bit浮点数图像;
templ : 模板图像,必须与输入图像一致;
result : 必须是单通道32位浮点数,假定原图像大小 为
W
i
d
t
h
×
H
e
i
g
h
t
Width \times Height
Width×Height,模板图像大小为
w
i
d
t
h
×
h
e
i
g
h
t
width \times height
width×height,则输出图像大小必须是
(
W
i
d
t
h
−
w
i
d
t
h
+
1
)
×
(
H
e
i
g
h
t
−
h
e
i
g
h
t
+
1
)
(Width - width + 1 )\times (Height -height + 1)
(Width−width+1)×(Height−height+1)
method : 使用的匹配方法(宏定义,尽量使用归一化方法)
Code
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace std;
using namespace cv;
Mat t1, src, dst;
int match_method = CV_TM_SQDIFF_NORMED;
int max_track = 5;
const char* INPUT = "input image";
const char* OUTPUT = "result image";
const char* match_t = "template match demo";
void Match_Demo(int, void*);
int main(int argc, char** argv)
{
//待检测图像
src = imread("C:\\Users\\hello\\Desktop\\20.jpg");
//模板图像
t1 = imread("C:\\Users\\hello\\Desktop\\50.jpg");
if (src.empty() || t1.empty())
{
cout << "could not load the image..." << endl;
return -1;
}
namedWindow(INPUT, WINDOW_AUTOSIZE);
namedWindow(OUTPUT, WINDOW_AUTOSIZE);
namedWindow(match_t, WINDOW_AUTOSIZE);
imshow(INPUT, src);
imshow("template image", t1);
createTrackbar("Template Match Method:", INPUT, &match_method, max_track, Match_Demo);
Match_Demo(0, 0);
waitKey(0);
return 0;
}
void Match_Demo(int, void*)
{
//实现模板匹配
int width = src.cols - t1.cols + 1;
int height = src.rows - t1.rows + 1;
Mat result(height,width,CV_32FC1);
//result.create(height, width, CV_32FC1);
//调用模板匹配
matchTemplate(src, t1, result, match_method, Mat()); //从滑动条中获取值
//最后得到的图片不再0-1之间,需要对图像归一化 求取模板匹配中的最大最小值,与哪些位置匹配
normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat());
//找出最小值与最大值匹配的位置
Point minLoc;
Point maxLoc;
double min, max;
minMaxLoc(result, &min, &max, &minLoc, &maxLoc, Mat());
//将位置绘制出来
src.copyTo(dst);
Point tempLoc;
if (match_method == CV_TM_SQDIFF_NORMED || match_method == CV_TM_SQDIFF_NORMED)
{
tempLoc = minLoc;
}
else
{
tempLoc = maxLoc;
}
//绘制矩形
rectangle(dst, Rect(tempLoc.x, tempLoc.y, t1.cols, t1.rows), Scalar(0, 0, 255), 2, LINE_AA);
rectangle(result, Rect(tempLoc.x, tempLoc.y, t1.cols, t1.rows), Scalar(0, 0, 255), 2, LINE_AA);
imshow(OUTPUT, result);
imshow(match_t, dst);
}
效果
原图像,模板图像,模板匹配输出图像分别如下:
注意:OpenCV提供的6种算法需要自行判断适应性,有的算法适应性不好,对某些模板检测会出现错误的情况,属于算法本身的缺陷;有的算法则不会出现这种情况;