机器学习之泊松分布及均匀分布

本文介绍了泊松分布和均匀分布的概念及其在机器学习中的应用。泊松分布适用于描述单位时间内随机事件的发生次数,其期望和方差均为λ。当二项分布的n很大,p很小,np=λ适中时,可以近似为泊松分布。均匀分布则是一种连续型概率分布,概率密度为常数,适用于定义在[a, b]区间内的随机变量。在Python中,可以通过location和scale参数来定义均匀分布的区间。" 130969554,15629644,Vue.js与ElementUI:解决el-select回显数据未选中问题,"['前端开发', 'Vue', 'ElementUI', '数据绑定']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

泊松分布 适合描述单位时间或单位面积内随机事件的平均发生率。泊松分布的概率质量函数为:
P ( X = k ) = e − λ λ k / k ! P(X=k)=e^{-\lambda} \lambda^k/k! P(X=k)=eλλk/k!

参数λ单位时间(或单位面积)内随机事件的平均发生频率。 把一个随机变量X服从参数为λ的泊松分布,记作X~Poisson(λ),或X~P(λ)。泊松分布适合于描述单位时间内随机事 件发生次数的概率分布。

期望和方差都是: λ \lambda λ

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
def</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WEL测试

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值