滤波算法_扩展卡尔曼滤波(EKF, Extended Kalman filter)_全网最详细的数学推导_Part2

本文是滤波算法_扩展卡尔曼滤波(EKF, Extended Kalman filter)_全网最详细的数学推导_Part1的延续。

3、卡尔曼增益推导

回顾标准卡尔曼滤波中 模型估计和测量估计进行数据融合的方程(后验估计方程): x ^ k = x ^ k − + K k ( z k − H x ^ k − ) {\mathbf{\hat x}}_k^{} = {\mathbf{\hat x}}_k^ - + {K_k}\left( {{{\mathbf{z}}_k} - {\mathbf{H\hat x}}_k^ - } \right) x^k=x^k+Kk(zkHx^k)
类似地:扩展卡尔曼滤波的后验估计方程定义如下:
x ^ k ≜ x ^ k − + K k ( z k − h ( x ^ k − , 0 ) ) = x ^ k − + K k ( z k − z ^ k − ) {\mathbf{\hat x}}_k^{} \triangleq {\mathbf{\hat x}}_k^ - + {K_k}\left( {{{\mathbf{z}}_k} - h\left( {{\mathbf{\hat x}}_k^ - ,{\mathbf{0}}} \right)} \right) = {\mathbf{\hat x}}_k^ - + {K_k}\left( {{{\mathbf{z}}_k} - {\mathbf{\hat z}}_k^ - } \right) x^kx^k+Kk(zkh(x^k,0))=x^k+Kk(zkz^k)
在上述的定义中, h ( x ^ k − , 0 ) h\left( {{\mathbf{\hat x}}_k^ - ,{\mathbf{0}}} \right) h(x^k,0)与标准卡尔曼滤波后验估计方程中的 H x ^ k − {\mathbf{H\hat x}}_k^ - Hx^k代表相同的含义。

与标准卡尔曼滤波类似,现在的问题也是 K k {K_k} Kk应该如何设计?

与标准卡尔曼滤波的推导过程类似,首先定义估计误差向量为: e k = x k − x ^ k {{\mathbf{e}}_k} = {{\mathbf{x}}_k} - {\mathbf{\hat x}}_k^{} ek=xkx^k p ( e k ) ∼ ( 0 , P k ) p\left( {{{\mathbf{e}}_k}} \right) \sim \left( {{\mathbf{0}},{{\mathbf{P}}_k}} \right) p(ek)(0,Pk),要想 x ^ k → x k {\mathbf{\hat x}}_k^{} \to {{\mathbf{x}}_k} x^kxk,就需要令误差 e k = x k − x ^ k {{\mathbf{e}}_k} = {{\mathbf{x}}_k} - {\mathbf{\hat x}}_k^{} ek=xkx^k的方差最小,方差越小,就越接近于期望值,而我们当然期望估计误差向量为0了,即: E ( e k ) = 0 E\left( {{{\mathbf{e}}_k}} \right) = 0 E(ek)=0。 同样地,与标准卡尔曼滤波的推导类似,估计误差向量的方差最小,即是估计误差协方差矩阵 P k {{{\mathbf{P}}_k}} Pk的迹 t r ( P k ) = σ e 1 2 + σ e 2 2 + ⋯ σ e n 2 tr\left( {{{\mathbf{P}}_k}} \right) = \sigma _{{e_1}}^2 + \sigma _{{e_2}}^2 + \cdots \sigma _{{e_n}}^2 tr(Pk)=σe12+σe22+σen2最小。
P k = E ( e k e k T ) = E [ ( x k − x ^ k ) ( x k − x ^ k ) T ] {{\mathbf{P}}_k} = E\left( {{{\mathbf{e}}_k}{\mathbf{e}}_k^T} \right) = E\left[ {\left( {{{\mathbf{x}}_k} - {\mathbf{\hat x}}_k^{}} \right){{\left( {{{\mathbf{x}}_k} - {\mathbf{\hat x}}_k^{}} \right)}^T}} \right] Pk=E(ekekT)=E[(xkx^k)(xkx^k)T]

在标准卡尔曼滤波的那篇博客我已经推导过上式的结论了。


明确目标后,下面正式开始扩展卡尔曼滤波的Kalman Gain K k {K_k} Kk求解。
首先化简 x k − x ^ k {{\mathbf{x}}_k} - {\mathbf{\hat x}}_k^{} xkx^k,将 x k = x ^ k − + A k ( x k − 1 − x ^ k − 1 ) + W k w k − 1 {{\mathbf{x}}_k}{\mathbf{ = \hat x}}_k^ - + {{\mathbf{A}}_k}\left( {{{\mathbf{x}}_{k - 1}} - {{{\mathbf{\hat x}}}_{k - 1}}} \right) + {{\mathbf{W}}_k}{{\mathbf{w}}_{k - 1}} xk=x^k+Ak(xk1x^k1)+Wkwk1 x ^ k = x ^ k − + K k ( z k − z ^ k − ) {\mathbf{\hat x}}_k^{} = {\mathbf{\hat x}}_k^ - + {K_k}\left( {{{\mathbf{z}}_k} - {\mathbf{\hat z}}_k^ - } \right) x^k=x^k+Kk(zkz^k)代入:
x k − x ^ k = [ x ^ k − + A k ( x k − 1 − x ^ k − 1 ) + W k w k − 1 ] − [ x ^ k − + K k ( z k − z ^ k − ) ] = A k ( x k − 1 − x ^ k − 1 ) + W k w k − 1 − K k ( z k − z ^ k − ) \begin{aligned} {{\bf{x}}_k} - {\bf{\hat x}}_k^{} &= \left[ {{\bf{\hat x}}_k^ - + {{\bf{A}}_k}\left( {{{\bf{x}}_{k - 1}} - {{{\bf{\hat x}}}_{k - 1}}} \right) + {{\bf{W}}_k}{{\bf{w}}_{k - 1}}} \right] - \left[ {{\bf{\hat x}}_k^ - + {K_k}\left( {{{\bf{z}}_k} - {\bf{\hat z}}_k^ - } \right)} \right]\\\\ &= {{\bf{A}}_k}\left( {{{\bf{x}}_{k - 1}} - {{{\bf{\hat x}}}_{k - 1}}} \right) + {{\bf{W}}_k}{{\bf{w}}_{k - 1}} - {K_k}\left( {{{\bf{z}}_k} - {\bf{\hat z}}_k^ - } \right) \end{aligned} xkx^k=[x^k+Ak(xk1x^k1)+Wkwk1][x^k+Kk(zkz^k)]=Ak(xk1x^k1)+Wkwk1Kk(zkz^k)

进一步将 z k = z ^ k − + H k ⋅ ( x k − x ^ k − ) + V k v k {{\bf{z}}_k} = {\bf{\hat z}}_k^ - + {{\bf{H}}_k} \cdot \left( {{{\bf{x}}_k} - {\bf{\hat x}}_k^ - } \right) + {{\bf{V}}_k}{{\bf{v}}_k} zk=z^k+Hk(xkx^k)+Vkvk代入:

x k − x ^ k = A k ( x k − 1 − x ^ k − 1 ) + W k w k − 1 − K k { [ z ^ k − + H k ⋅ ( x k − x ^ k − ) + V k v k ] − z ^ k − } = A k ( x k − 1 − x ^ k − 1 ) + W k w k − 1 − K k [ H k ⋅ ( x k − x ^ k − ) + V k v k ] \begin{aligned} {{\bf{x}}_k} - {\bf{\hat x}}_k^{} &= {{\bf{A}}_k}\left( {{{\bf{x}}_{k - 1}} - {{{\bf{\hat x}}}_{k - 1}}} \right) + {{\bf{W}}_k}{{\bf{w}}_{k - 1}} - {K_k}\left\{ {\left[ {{\bf{\hat z}}_k^ - + {{\bf{H}}_k} \cdot \left( {{{\bf{x}}_k} - {\bf{\hat x}}_k^ - } \right) + {{\bf{V}}_k}{{\bf{v}}_k}} \right] - {\bf{\hat z}}_k^ - } \right\}\\\\ &= {{\bf{A}}_k}\left( {{{\bf{x}}_{k - 1}} - {{{\bf{\hat x}}}_{k - 1}}} \right) + {{\bf{W}}_k}{{\bf{w}}_{k - 1}} - {K_k}\left[ {{{\bf{H}}_k} \cdot \left( {{{\bf{x}}_k} - {\bf{\hat x}}_k^ - } \right) + {{\bf{V}}_k}{{\bf{v}}_k}} \right] \end{aligned} xkx^k=Ak(xk1x^k1)+Wkwk1Kk{[z^k+Hk(xkx^k)+Vkvk]z^k}=Ak(xk1x^k1)+Wkwk1Kk[Hk(xkx^k)+Vkvk]

不必惊讶, 下面进一步再将 x k = x ^ k − + A k ( x k − 1 − x ^ k − 1 ) + W k w k − 1 {{\mathbf{x}}_k}{\mathbf{ = \hat x}}_k^ - + {{\mathbf{A}}_k}\left( {{{\mathbf{x}}_{k - 1}} - {{{\mathbf{\hat x}}}_{k - 1}}} \right) + {{\mathbf{W}}_k}{{\mathbf{w}}_{k - 1}} xk=x^k+Ak(xk1x^k1)+Wkwk1代入:

x k − x ^ k = A k ( x k − 1 − x ^ k − 1 ) + W k w k − 1 − K k { H k [ x ^ k − + A k ( x k − 1 − x ^ k − 1 ) + W k w k − 1 − x ^ k − ] + V k v k } = A k ( x k − 1 − x ^ k − 1 ) + W k w k − 1 − ( K k H k A k ( x k − 1 − x ^ k − 1 ) + K k H k W k w k − 1 + K k V k v k ) = A k ( x k − 1 − x ^ k − 1 ) + W k w k − 1 − K k H k A k ( x k − 1 − x ^ k − 1 ) − K k H k W k w k − 1 − K k V k v k \begin{aligned} {{\bf{x}}_k} - {\bf{\hat x}}_k^{} &= {{\bf{A}}_k}\left( {{{\bf{x}}_{k - 1}} - {{{\bf{\hat x}}}_{k - 1}}} \right) + {{\bf{W}}_k}{{\bf{w}}_{k - 1}} - {K_k}\left\{ {{{\bf{H}}_k}\left[ {{\bf{\hat x}}_k^ - + {{\bf{A}}_k}\left( {{{\bf{x}}_{k - 1}} - {{{\bf{\hat x}}}_{k - 1}}} \right) + {{\bf{W}}_k}{{\bf{w}}_{k - 1}} - {\bf{\hat x}}_k^ - } \right] + {{\bf{V}}_k}{{\bf{v}}_k}} \right\}\\\\ &= {{\bf{A}}_k}\left( {{{\bf{x}}_{k - 1}} - {{{\bf{\hat x}}}_{k - 1}}} \right) + {{\bf{W}}_k}{{\bf{w}}_{k - 1}} - \left( {{K_k}{{\bf{H}}_k}{{\bf{A}}_k}\left( {{{\bf{x}}_{k - 1}} - {{{\bf{\hat x}}}_{k - 1}}} \right) + {K_k}{{\bf{H}}_k}{{\bf{W}}_k}{{\bf{w}}_{k - 1}} + {K_k}{{\bf{V}}_k}{{\bf{v}}_k}} \right)\\\\ & = {{\bf{A}}_k}\left( {{{\bf{x}}_{k - 1}} - {{{\bf{\hat x}}}_{k - 1}}} \right) + {{\bf{W}}_k}{{\bf{w}}_{k - 1}} - {K_k}{{\bf{H}}_k}{{\bf{A}}_k}\left( {{{\bf{x}}_{k - 1}} - {{{\bf{\hat x}}}_{k - 1}}} \right) - {K_k}{{\bf{H}}_k}{{\bf{W}}_k}{{\bf{w}}_{k - 1}} - {K_k}{{\bf{V}}_k}{{\bf{v}}_k} \end{aligned} xkx^k=Ak(xk1x^k1)+Wkwk1Kk{Hk[x^k+Ak(xk1x^k1)+Wkwk1x^k]+Vkvk}=Ak(xk1x^k1)+Wkwk1(KkHkAk(xk1x^k1)+KkHkWkwk1+KkVkvk)=Ak(xk1x^k1)+Wkwk1KkHkAk(xk1x^k1)KkHkWkwk1KkVkvk

由于前面定义了 e k = x k − x ^ k {{\bf{e}}_k} = {{\bf{x}}_k} - {\bf{\hat x}}_k^{} ek=xkx^k,所以 x k − 1 − x ^ k − 1 {{{\bf{x}}_{k - 1}} - {{{\bf{\hat x}}}_{k - 1}}} xk1x^k1可以用 e k − 1 {e_{k - 1}} ek1来表示, x k − x ^ k {{\bf{x}}_k} - {\bf{\hat x}}_k^{} xkx^k进一步化简为:
x k − x ^ k = A k e k − 1 + W k w k − 1 − K k H k A k e k − 1 − K k H k W k w k − 1 − K k V k v k {{\bf{x}}_k} - {\bf{\hat x}}_k^{} = {{\bf{A}}_k}{e_{k - 1}} + {{\bf{W}}_k}{{\bf{w}}_{k - 1}} - {K_k}{{\bf{H}}_k}{{\bf{A}}_k}{e_{k - 1}} - {K_k}{{\bf{H}}_k}{{\bf{W}}_k}{{\bf{w}}_{k - 1}} - {K_k}{{\bf{V}}_k}{{\bf{v}}_k} xkx^k=Akek1+Wkwk1KkHkAkek1KkHkWkwk1KkVkvk

( x k − x ^ k ) T = e k − 1 T A k T + w k − 1 T W k T − e k − 1 T A k T H k T K k T − w k − 1 T W k T H k T K k T − v k T V k T K k T {\left( {{{\bf{x}}_k} - {\bf{\hat x}}_k^{}} \right)^T} = e_{k - 1}^T{\bf{A}}_k^T + {\bf{w}}_{k - 1}^T{\bf{W}}_k^T - e_{k - 1}^T{\bf{A}}_k^T{\bf{H}}_k^TK_k^T - {\bf{w}}_{k - 1}^T{\bf{W}}_k^T{\bf{H}}_k^TK_k^T - {\bf{v}}_k^T{\bf{V}}_k^TK_k^T (xkx^k)T=ek1TAkT+wk1TWkTek1TAkTHkTKkTwk1TWkTHkTKkTvkTVkTKkT

P k = E ( e k e k T ) = E [ ( x k − x ^ k ) ( x k − x ^ k ) T ] = E [ ( A k e k − 1 + W k w k − 1 − K k H k A k e k − 1 − K k H k W k w k − 1 − K k V k v k ) × ( e k − 1 T A k T + w k − 1 T W k T − e k − 1 T A k T H k T K k T − w k − 1 T W k T H k T K k T − v k T V k T K k T ) ] \begin{aligned} {{\bf{P}}_k} &= E\left( {{{\bf{e}}_k}{\bf{e}}_k^T} \right) = E\left[ {\left( {{{\bf{x}}_k} - {\bf{\hat x}}_k^{}} \right){{\left( {{{\bf{x}}_k} - {\bf{\hat x}}_k^{}} \right)}^T}} \right]\\\\ & = E\left[ \begin{array}{l} \left( {{{\bf{A}}_k}{e_{k - 1}} + {{\bf{W}}_k}{{\bf{w}}_{k - 1}} - {K_k}{{\bf{H}}_k}{{\bf{A}}_k}{e_{k - 1}} - {K_k}{{\bf{H}}_k}{{\bf{W}}_k}{{\bf{w}}_{k - 1}} - {K_k}{{\bf{V}}_k}{{\bf{v}}_k}} \right)\\\\ \times \left( {e_{k - 1}^T{\bf{A}}_k^T + {\bf{w}}_{k - 1}^T{\bf{W}}_k^T - e_{k - 1}^T{\bf{A}}_k^T{\bf{H}}_k^TK_k^T - {\bf{w}}_{k - 1}^T{\bf{W}}_k^T{\bf{H}}_k^TK_k^T - {\bf{v}}_k^T{\bf{V}}_k^TK_k^T} \right) \end{array} \right] \end{aligned} Pk=E(ekekT)=E[(xkx^k)(xkx^k)T]=E (Akek1+Wkwk1KkHkAkek1KkHkWkwk1KkVkvk)×(ek1TAkT+wk1TWkTek1TAkTHkTKkTwk1TWkTHkTKkTvkTVkTKkT)


上式公式如果真的展开的话,公式会特别长,因此下面拿一项来说明化简的办法,在上式第一个括号的第一项与第二个括号的第二项相乘时,会产生一项是: E ( A k e k − 1 w k − 1 T W k T ) = A k E ( e k − 1 w k − 1 T ) W k T E\left( {{{\bf{A}}_k}{e_{k - 1}}{\bf{w}}_{k - 1}^T{\bf{W}}_k^T} \right) = {{\bf{A}}_k}E\left( {{e_{k - 1}}{\bf{w}}_{k - 1}^T} \right){\bf{W}}_k^T E(Akek1wk1TWkT)=AkE(ek1wk1T)WkT因为 e k − 1 , w k − 1 {e_{k - 1}},{\bf{w}}_{k - 1}^{} ek1,wk1互相独立的随机变量,因此: A k E ( e k − 1 w k − 1 T ) W k T = A k E ( e k − 1 ) E ( w k − 1 T ) W k T = A k ⋅ 0 ⋅ 0 ⋅ W k T = 0 {{\bf{A}}_k}E\left( {{e_{k - 1}}{\bf{w}}_{k - 1}^T} \right){\bf{W}}_k^T = {{\bf{A}}_k}E\left( {{e_{k - 1}}} \right)E\left( {{\bf{w}}_{k - 1}^T} \right){\bf{W}}_k^T = {{\bf{A}}_k} \cdot {\bf{0}} \cdot {\bf{0}} \cdot {\bf{W}}_k^T = 0 AkE(ek1wk1T)WkT=AkE(ek1)E(wk1T)WkT=Ak00WkT=0

因此在化简上式的时候,就可以把存在两个互相独立的随机变量的项全部约掉。 e k − 1 , w k − 1 , v k {e_{k - 1}},{\bf{w}}_{k - 1}^{},{{\bf{v}}_k} ek1,wk1,vk它们三个都互相独立的。


P k {\bf{P}}_k Pk的表达式可进一步化为:

P k = E [ ( A k e k − 1 + W k w k − 1 − K k H k A k e k − 1 − K k H k W k w k − 1 − K k V k v k ) × ( e k − 1 T A k T + w k − 1 T W k T − e k − 1 T A k T H k T K k T − w k − 1 T W k T H k T K k T − v k T V k T K k T ) ] = A k E ( e k − 1 e k − 1 T ) A k T − A k E ( e k − 1 e k − 1 T ) A k T H k T K k T + W k E ( w k − 1 w k − 1 T ) W k T − W k E ( w k − 1 w k − 1 T ) W k T H k T K k T − K k H k A k E ( e k − 1 e k − 1 T ) A k T + K k H k A k E ( e k − 1 e k − 1 T ) A k T H k T K k T − K k H k W k E ( w k − 1 w k − 1 T ) W k T + K k H k W k E ( w k − 1 w k − 1 T ) W k T H k T K k T + K k V k E ( v k v k T ) V k T K k T \begin{aligned} {{\bf{P}}_k} &= E\left[ \begin{array}{l} \left( {{{\bf{A}}_k}{e_{k - 1}} + {{\bf{W}}_k}{{\bf{w}}_{k - 1}} - {K_k}{{\bf{H}}_k}{{\bf{A}}_k}{e_{k - 1}} - {K_k}{{\bf{H}}_k}{{\bf{W}}_k}{{\bf{w}}_{k - 1}} - {K_k}{{\bf{V}}_k}{{\bf{v}}_k}} \right)\\\\ \times \left( {e_{k - 1}^T{\bf{A}}_k^T + {\bf{w}}_{k - 1}^T{\bf{W}}_k^T - e_{k - 1}^T{\bf{A}}_k^T{\bf{H}}_k^TK_k^T - {\bf{w}}_{k - 1}^T{\bf{W}}_k^T{\bf{H}}_k^TK_k^T - {\bf{v}}_k^T{\bf{V}}_k^TK_k^T} \right) \end{array} \right]\\\\ & = {{\bf{A}}_k}E\left( {{e_{k - 1}}e_{k - 1}^T} \right){\bf{A}}_k^T - {{\bf{A}}_k}E\left( {{e_{k - 1}}e_{k - 1}^T} \right){\bf{A}}_k^T{\bf{H}}_k^TK_k^T + {{\bf{W}}_k}E\left( {{{\bf{w}}_{k - 1}}{\bf{w}}_{k - 1}^T} \right){\bf{W}}_k^T\\\\ &-{{\bf{W}}_k}E\left( {{{\bf{w}}_{k - 1}}{\bf{w}}_{k - 1}^T} \right){\bf{W}}_k^T{\bf{H}}_k^TK_k^T - {K_k}{{\bf{H}}_k}{{\bf{A}}_k}E\left( {{e_{k - 1}}e_{k - 1}^T} \right){\bf{A}}_k^T + {K_k}{{\bf{H}}_k}{{\bf{A}}_k}E\left( {{e_{k - 1}}e_{k - 1}^T} \right){\bf{A}}_k^T{\bf{H}}_k^TK_k^T\\\\ &-{K_k}{{\bf{H}}_k}{{\bf{W}}_k}E\left( {{{\bf{w}}_{k - 1}}{\bf{w}}_{k - 1}^T} \right){\bf{W}}_k^T + {K_k}{{\bf{H}}_k}{{\bf{W}}_k}E\left( {{{\bf{w}}_{k - 1}}{\bf{w}}_{k - 1}^T} \right){\bf{W}}_k^T{\bf{H}}_k^TK_k^T + {K_k}{{\bf{V}}_k}E\left( {{{\bf{v}}_k}{\bf{v}}_k^T} \right){\bf{V}}_k^TK_k^T \end{aligned} Pk=E (Akek1+Wkwk1KkHkAkek1KkHkWkwk1KkVkvk)×(ek1TAkT+wk1TWkTek1TAkTHkTKkTwk1TWkTHkTKkTvkTVkTKkT) =AkE(ek1ek1T)AkTAkE(ek1ek1T)AkTHkTKkT+WkE(wk1wk1T)WkTWkE(wk1wk1T)WkTHkTKkTKkHkAkE(ek1ek1T)AkT+KkHkAkE(ek1ek1T)AkTHkTKkTKkHkWkE(wk1wk1T)WkT+KkHkWkE(wk1wk1T)WkTHkTKkT+KkVkE(vkvkT)VkTKkT

这里引用标准卡尔曼滤波里面的结论。
E ( e k − 1 e k − 1 T ) = P k − 1 , E ( w k − 1 w k − 1 T ) = Q , E ( v k v k T ) = R E\left( {{e_{k - 1}}e_{k - 1}^T} \right) = {P_{k - 1}},E\left( {{{\bf{w}}_{k - 1}}{\bf{w}}_{k - 1}^T} \right) = Q,E\left( {{{\bf{v}}_k}{\bf{v}}_k^T} \right) = R E(ek1ek1T)=Pk1,E(wk1wk1T)=Q,E(vkvkT)=R
将其代入可得:
P k = A k P k − 1 A k T − A k P k − 1 A k T H k T K k T + W k Q W k T − W k Q W k T H k T K k T − K k H k A k P k − 1 A k T + K k H k A k P k − 1 A k T H k T K k T − K k H k W k Q W k T + K k H k W k Q W k T H k T K k T + K k V k R V k T K k T \begin{aligned} {{\bf{P}}_k} &= {{\bf{A}}_k}{P_{k - 1}}{\bf{A}}_k^T - {{\bf{A}}_k}{P_{k - 1}}{\bf{A}}_k^T{\bf{H}}_k^TK_k^T + {{\bf{W}}_k}Q{\bf{W}}_k^T - {{\bf{W}}_k}Q{\bf{W}}_k^T{\bf{H}}_k^TK_k^T\\\\ &-{K_k}{{\bf{H}}_k}{{\bf{A}}_k}{P_{k - 1}}{\bf{A}}_k^T + {K_k}{{\bf{H}}_k}{{\bf{A}}_k}{P_{k - 1}}{\bf{A}}_k^T{\bf{H}}_k^TK_k^T - {K_k}{{\bf{H}}_k}{{\bf{W}}_k}Q{\bf{W}}_k^T\\\\ &+{K_k}{{\bf{H}}_k}{{\bf{W}}_k}Q{\bf{W}}_k^T{\bf{H}}_k^TK_k^T + {K_k}{{\bf{V}}_k}R{\bf{V}}_k^TK_k^T \end{aligned} Pk=AkPk1AkTAkPk1AkTHkTKkT+WkQWkTWkQWkTHkTKkTKkHkAkPk1AkT+KkHkAkPk1AkTHkTKkTKkHkWkQWkT+KkHkWkQWkTHkTKkT+KkVkRVkTKkT

进一步提取公共项,把 P k {{\bf{P}}_k} Pk的表达式化简一番
P k = A k P k − 1 A k T − A k P k − 1 A k T H k T K k T + W k Q W k T − W k Q W k T H k T K k T − K k H k A k P k − 1 A k T + K k H k A k P k − 1 A k T H k T K k T − K k H k W k Q W k T + K k H k W k Q W k T H k T K k T + K k V k R V k T K k T = A k P k − 1 A k T ( I − H k T K k T ) + W k Q W k T ( I − H k T K k T ) − K k H k A k P k − 1 A k T ( I − H k T K k T ) − K k H k W k Q W k T ( I − H k T K k T ) + K k V k R V k T K k T = ( I − K k H k ) A k P k − 1 A k T ( I − H k T K k T ) + ( I − K k H k ) W k Q W k T ( I − H k T K k T ) + K k V k R V k T K k T = ( I − K k H k ) ( A k P k − 1 A k T + W k Q W k T ) ( I − H k T K k T ) + K k V k R V k T K k T \begin{aligned} {{\bf{P}}_k} &= {{\bf{A}}_k}{P_{k - 1}}{\bf{A}}_k^T - {{\bf{A}}_k}{P_{k - 1}}{\bf{A}}_k^T{\bf{H}}_k^TK_k^T + {{\bf{W}}_k}Q{\bf{W}}_k^T - {{\bf{W}}_k}Q{\bf{W}}_k^T{\bf{H}}_k^TK_k^T\\\\ &-{K_k}{{\bf{H}}_k}{{\bf{A}}_k}{P_{k - 1}}{\bf{A}}_k^T + {K_k}{{\bf{H}}_k}{{\bf{A}}_k}{P_{k - 1}}{\bf{A}}_k^T{\bf{H}}_k^TK_k^T - {K_k}{{\bf{H}}_k}{{\bf{W}}_k}Q{\bf{W}}_k^T\\\\ &+{K_k}{{\bf{H}}_k}{{\bf{W}}_k}Q{\bf{W}}_k^T{\bf{H}}_k^TK_k^T + {K_k}{{\bf{V}}_k}R{\bf{V}}_k^TK_k^T\\\\ &={{\bf{A}}_k}{P_{k - 1}}{\bf{A}}_k^T\left( {{\bf{I}} - {\bf{H}}_k^TK_k^T} \right) + {{\bf{W}}_k}Q{\bf{W}}_k^T\left( {{\bf{I}} - {\bf{H}}_k^TK_k^T} \right) - {K_k}{{\bf{H}}_k}{{\bf{A}}_k}{P_{k - 1}}{\bf{A}}_k^T\left( {{\bf{I}} - {\bf{H}}_k^TK_k^T} \right)\\\\ &-{K_k}{{\bf{H}}_k}{{\bf{W}}_k}Q{\bf{W}}_k^T\left( {{\bf{I}} - {\bf{H}}_k^TK_k^T} \right) + {K_k}{{\bf{V}}_k}R{\bf{V}}_k^TK_k^T\\\\ &=\left( {{\bf{I}} - {K_k}{{\bf{H}}_k}} \right){{\bf{A}}_k}{P_{k - 1}}{\bf{A}}_k^T\left( {{\bf{I}} - {\bf{H}}_k^TK_k^T} \right)\\\\ &+\left( {{\bf{I}} - {K_k}{{\bf{H}}_k}} \right){{\bf{W}}_k}Q{\bf{W}}_k^T\left( {{\bf{I}} - {\bf{H}}_k^TK_k^T} \right) + {K_k}{{\bf{V}}_k}R{\bf{V}}_k^TK_k^T\\\\ &= \left( {{\bf{I}} - {K_k}{{\bf{H}}_k}} \right)\left( {{{\bf{A}}_k}{P_{k - 1}}{\bf{A}}_k^T + {{\bf{W}}_k}Q{\bf{W}}_k^T} \right)\left( {{\bf{I}} - {\bf{H}}_k^TK_k^T} \right) + {K_k}{{\bf{V}}_k}R{\bf{V}}_k^TK_k^T \end{aligned} Pk=AkPk1AkTAkPk1AkTHkTKkT+WkQWkTWkQWkTHkTKkTKkHkAkPk1AkT+KkHkAkPk1AkTHkTKkTKkHkWkQWkT+KkHkWkQWkTHkTKkT+KkVkRVkTKkT=AkPk1AkT(IHkTKkT)+WkQWkT(IHkTKkT)KkHkAkPk1AkT(IHkTKkT)KkHkWkQWkT(IHkTKkT)+KkVkRVkTKkT=(IKkHk)AkPk1AkT(IHkTKkT)+(IKkHk)WkQWkT(IHkTKkT)+KkVkRVkTKkT=(IKkHk)(AkPk1AkT+WkQWkT)(IHkTKkT)+KkVkRVkTKkT

大道至简,越简洁的式子越美。 P k {{\bf{P}}_k} Pk的化简式暂时先放一放。

参考估计误差向量的定义: e k = x k − x ^ k {{\bf{e}}_k} = {{\bf{x}}_k} - {\bf{\hat x}}_k^{} ek=xkx^k定义先验估计误差向量为:
e k − = x k − x ^ k − {\bf{e}}_k^ - = {{\bf{x}}_k} - {\bf{\hat x}}_k^ - ek=xkx^k
那么,
P k − = E ( e k − e k − T ) = E [ ( x k − x ^ k − ) ( x k − x ^ k − ) T ] {\bf{P}}_k^ - = E\left( {{\bf{e}}_k^ - {\bf{e}}_k^{ - T}} \right) = E\left[ {\left( {{{\bf{x}}_k} - {\bf{\hat x}}_k^ - } \right){{\left( {{{\bf{x}}_k} - {\bf{\hat x}}_k^ - } \right)}^T}} \right] Pk=E(ekekT)=E[(xkx^k)(xkx^k)T]
同样地,先计算 x k − x ^ k − {{\bf{x}}_k} - {\bf{\hat x}}_k^ - xkx^k
x k − x ^ k − = [ x ^ k − + A k ( x k − 1 − x ^ k − 1 ) + W k w k − 1 ] − x ^ k − = A k ( x k − 1 − x ^ k − 1 ) + W k w k − 1 = A k e k − 1 + W k w k − 1 \begin{aligned} {{\bf{x}}_k} - {\bf{\hat x}}_k^ - &= \left[ {{\bf{\hat x}}_k^ - + {{\bf{A}}_k}\left( {{{\bf{x}}_{k - 1}} - {{{\bf{\hat x}}}_{k - 1}}} \right) + {{\bf{W}}_k}{{\bf{w}}_{k - 1}}} \right] - {\bf{\hat x}}_k^ - \\\\ &= {{\bf{A}}_k}\left( {{{\bf{x}}_{k - 1}} - {{{\bf{\hat x}}}_{k - 1}}} \right) + {{\bf{W}}_k}{{\bf{w}}_{k - 1}} = {{\bf{A}}_k}{{\bf{e}}_{k - 1}} + {{\bf{W}}_k}{{\bf{w}}_{k - 1}} \end{aligned} xkx^k=[x^k+Ak(xk1x^k1)+Wkwk1]x^k=Ak(xk1x^k1)+Wkwk1=Akek1+Wkwk1
( x k − x ^ k − ) T {\left( {{{\bf{x}}_k} - {\bf{\hat x}}_k^ - } \right)^T} (xkx^k)T也先求出来方便后续计算。
( x k − x ^ k − ) T = e k − 1 T A k T + w k − 1 T W k T {\left( {{{\bf{x}}_k} - {\bf{\hat x}}_k^ - } \right)^T} = {\bf{e}}_{k - 1}^T{\bf{A}}_k^T + {\bf{w}}_{k - 1}^T{\bf{W}}_k^T (xkx^k)T=ek1TAkT+wk1TWkT

将上面两个式子代入到 P k − {\bf{P}}_k^ - Pk 的表达式中:
P k − = E [ ( x k − x ^ k − ) ( x k − x ^ k − ) T ] = E [ ( A k e k − 1 + W k w k − 1 ) ( e k − 1 T A k T + w k − 1 T W k T ) ] = A k E ( e k − 1 e k − 1 T ) A k T + A k E ( e k − 1 w k − 1 T ) W k T + W k E ( w k − 1 e k − 1 T ) A k T + W k E ( w k − 1 w k − 1 T ) W k T = A k P k − 1 A k T + 0 + 0 + W k Q W k T = A k P k − 1 A k T + W k Q W k T \begin{aligned} {\bf{P}}_k^ - &= E\left[ {\left( {{{\bf{x}}_k} - {\bf{\hat x}}_k^ - } \right){{\left( {{{\bf{x}}_k} - {\bf{\hat x}}_k^ - } \right)}^T}} \right] = E\left[ {\left( {{{\bf{A}}_k}{{\bf{e}}_{k - 1}} + {{\bf{W}}_k}{{\bf{w}}_{k - 1}}} \right)\left( {{\bf{e}}_{k - 1}^T{\bf{A}}_k^T + {\bf{w}}_{k - 1}^T{\bf{W}}_k^T} \right)} \right]\\\\ &= {{\bf{A}}_k}E\left( {{{\bf{e}}_{k - 1}}{\bf{e}}_{k - 1}^T} \right){\bf{A}}_k^T + {{\bf{A}}_k}E\left( {{{\bf{e}}_{k - 1}}{\bf{w}}_{k - 1}^T} \right){\bf{W}}_k^T + {{\bf{W}}_k}E\left( {{{\bf{w}}_{k - 1}}{\bf{e}}_{k - 1}^T} \right){\bf{A}}_k^T + {{\bf{W}}_k}E\left( {{{\bf{w}}_{k - 1}}{\bf{w}}_{k - 1}^T} \right){\bf{W}}_k^T\\\\ &= {{\bf{A}}_k}{\bf{P}}_{k - 1}^{}{\bf{A}}_k^T + 0 + 0 + {{\bf{W}}_k}{\bf{QW}}_k^T\\\\ &= {{\bf{A}}_k}{\bf{P}}_{k - 1}^{}{\bf{A}}_k^T + {{\bf{W}}_k}{\bf{QW}}_k^T \end{aligned} Pk=E[(xkx^k)(xkx^k)T]=E[(Akek1+Wkwk1)(ek1TAkT+wk1TWkT)]=AkE(ek1ek1T)AkT+AkE(ek1wk1T)WkT+WkE(wk1ek1T)AkT+WkE(wk1wk1T)WkT=AkPk1AkT+0+0+WkQWkT=AkPk1AkT+WkQWkT

P k − = A k P k − 1 A k T + W k Q W k T {\bf{P}}_k^ - = {{\bf{A}}_k}{\bf{P}}_{k - 1}^{}{\bf{A}}_k^T + {{\bf{W}}_k}{\bf{QW}}_k^T Pk=AkPk1AkT+WkQWkT,带入到 P k {{\bf{P}}_k} Pk的公式当中,可得

P k = ( I − K k H k ) ( A k P k − 1 A k T + W k Q W k T ) ( I − H k T K k T ) + K k V k R V k T K k T = ( I − K k H k ) P k − ( I − H k T K k T ) + K k V k R V k T K k T \begin{aligned} {{\bf{P}}_k} &= \left( {{\bf{I}} - {K_k}{{\bf{H}}_k}} \right)\left( {{{\bf{A}}_k}{P_{k - 1}}{\bf{A}}_k^T + {{\bf{W}}_k}Q{\bf{W}}_k^T} \right)\left( {{\bf{I}} - {\bf{H}}_k^TK_k^T} \right) + {K_k}{{\bf{V}}_k}R{\bf{V}}_k^TK_k^T\\\\ & = \left( {{\bf{I}} - {K_k}{{\bf{H}}_k}} \right){\bf{P}}_k^ - \left( {{\bf{I}} - {\bf{H}}_k^TK_k^T} \right) + {K_k}{{\bf{V}}_k}R{\bf{V}}_k^TK_k^T \end{aligned} Pk=(IKkHk)(AkPk1AkT+WkQWkT)(IHkTKkT)+KkVkRVkTKkT=(IKkHk)Pk(IHkTKkT)+KkVkRVkTKkT

P k {{\bf{P}}_k} Pk的公式再进行展开:
P k = ( I − K k H k ) P k − ( I − H k T K k T ) + K k V k R V k T K k T = P k − − P k − H k T K k T − K k H k P k − + K k H k P k − H k T K k T + K k V k R V k T K k T \begin{aligned} {{\bf{P}}_k} &= \left( {{\bf{I}} - {K_k}{{\bf{H}}_k}} \right){\bf{P}}_k^ - \left( {{\bf{I}} - {\bf{H}}_k^TK_k^T} \right) + {K_k}{{\bf{V}}_k}R{\bf{V}}_k^TK_k^T\\\\ &= {\bf{P}}_k^ - - {\bf{P}}_k^ - {\bf{H}}_k^TK_k^T - {K_k}{{\bf{H}}_k}{\bf{P}}_k^ - + {K_k}{{\bf{H}}_k}{\bf{P}}_k^ - {\bf{H}}_k^TK_k^T + {K_k}{{\bf{V}}_k}R{\bf{V}}_k^TK_k^T \end{aligned} Pk=(IKkHk)Pk(IHkTKkT)+KkVkRVkTKkT=PkPkHkTKkTKkHkPk+KkHkPkHkTKkT+KkVkRVkTKkT


Don’t Forget,我们的目的是寻找一个合适的 K k {{\bf{K}}_k} Kk使得 t r ( P k ) tr\left( {{\bf{P}}_k^{}} \right) tr(Pk)最小。等式两边分别取迹可得:
t r ( P k ) = t r ( P k − ) − t r ( P k − H k T K k T ) − t r ( K k H k P k − ) + t r ( K k H k P k − H k T K k T ) + t r ( K k V k R V k T K k T ) tr\left( {{\bf{P}}_k^{}} \right) = tr\left( {{\bf{P}}_k^ - } \right) - tr\left( {{\bf{P}}_k^ - {\bf{H}}_k^T{\bf{K}}_k^T} \right) - tr\left( {{{\bf{K}}_k}{{\bf{H}}_k}{\bf{P}}_k^ - } \right) + tr\left( {{{\bf{K}}_k}{{\bf{H}}_k}{\bf{P}}_k^ - {\bf{H}}_k^T{\bf{K}}_k^T} \right) + tr\left( {{K_k}{{\bf{V}}_k}{\bf{RV}}_k^TK_k^T} \right) tr(Pk)=tr(Pk)tr(PkHkTKkT)tr(KkHkPk)+tr(KkHkPkHkTKkT)+tr(KkVkRVkTKkT)

注意上式的第二项和第三项,取第二项 P k − H T K k T {\bf{P}}_k^-{{\bf{H}}^T}{\bf{K}}_k^T PkHTKkT的转置 ( P k − H T K k T ) T = K k ( P k − H T ) T = K k H P k − T = K k H P k − {\left( {{\bf{P}}_k^- {{\bf{H}}^T}{\bf{K}}_k^T} \right)^T} = {{\bf{K}}_k}{\left( {{\bf{P}}_k^ - {{\bf{H}}^T}} \right)^T} = {{\bf{K}}_k}{\bf{HP}}{_k^{-T}}= {{\bf{K}}_k}{\bf{HP}}_k^- (PkHTKkT)T=Kk(PkHT)T=KkHPkT=KkHPk

第二项的转置正好是第三项。


数学基础知识补充:
如果 A = B T , t r ( A ) = t r ( B ) {\bf{A}} = {{\bf{B}}^T},tr\left( {\bf{A}} \right) = tr\left( {\bf{B}} \right) A=BT,tr(A)=tr(B) ,因为转置之后,对角线的不变的。


因此:
t r ( P k ) = t r ( P k − ) − 2 t r ( K k H k P k − ) + t r ( K k H k P k − H k T K k T ) + t r ( K k V k R V k T K k T ) tr\left( {{\bf{P}}_k^{}} \right) = tr\left( {{\bf{P}}_k^ - } \right) - 2tr\left( {{{\bf{K}}_k}{{\bf{H}}_k}{\bf{P}}_k^ - } \right) + tr\left( {{{\bf{K}}_k}{{\bf{H}}_k}{\bf{P}}_k^ - {\bf{H}}_k^T{\bf{K}}_k^T} \right) + tr\left( {{K_k}{{\bf{V}}_k}{\bf{RV}}_k^TK_k^T} \right) tr(Pk)=tr(Pk)2tr(KkHkPk)+tr(KkHkPkHkTKkT)+tr(KkVkRVkTKkT)

要找到 K k {{\bf{K}}_k} Kk使得 t r ( P k ) tr\left( {{\bf{P}}_k^{}} \right) tr(Pk)最小,即对 t r ( P k ) tr\left( {{\bf{P}}_k^{}} \right) tr(Pk) K k {{\bf{K}}_k} Kk的导数,并令导数为0。即:
d [ t r ( P k ) ] d ( K k ) = 0 \frac{{d\left[ {tr\left( {{\bf{P}}_k^{}} \right)} \right]}}{{d\left( {{\bf{K}}_k^{}} \right)}} = 0 d(Kk)d[tr(Pk)]=0


数学基础知识补充:
d [ t r ( A B ) ] d ( A ) = B T , d [ t r ( A B A T ) ] d ( A ) = 2 A B {{d\left[ {tr\left( {{\bf{AB}}} \right)} \right]} \over {d\left( {\bf{A}} \right)}} = {{\bf{B}}^T},{{d\left[ {tr\left( {{\bf{AB}}{{\bf{A}}^T}} \right)} \right]} \over {d\left( {\bf{A}} \right)}} = 2{\bf{AB}} d(A)d[tr(AB)]=BT,d(A)d[tr(ABAT)]=2AB


因此:
d [ t r ( P k ) ] d ( K k ) = 0 − 2 ( H k P k − ) T + 2 K k H k P k − H k T + 2 K k R = − 2 P k − H k T + 2 K k H k P k − H k T + 2 K k V k R V k T = 2 [ − P k − H k T + K k ( H k P k − H k T + V k R V k T ) ] = 0 \begin{aligned} \frac{{d\left[ {tr\left( {{\bf{P}}_k^{}} \right)} \right]}}{{d\left( {{\bf{K}}_k^{}} \right)}} &= {\bf{0}} - 2{\left( {{{\bf{H}}_k}{\bf{P}}_k^ - } \right)^T} + 2{{\bf{K}}_k}{{\bf{H}}_k}{\bf{P}}_k^ - {\bf{H}}_k^T + 2{{\bf{K}}_k}{\bf{R}}\\\\ &= - 2{\bf{P}}_k^ - {\bf{H}}_k^T + 2{{\bf{K}}_k}{{\bf{H}}_k}{\bf{P}}_k^ - {\bf{H}}_k^T + 2{{\bf{K}}_k}{{\bf{V}}_k}{\bf{RV}}_k^T\\\\ &= 2\left[ { - {\bf{P}}_k^ - {\bf{H}}_k^T + {{\bf{K}}_k}\left( {{{\bf{H}}_k}{\bf{P}}_k^ - {\bf{H}}_k^T + {{\bf{V}}_k}{\bf{RV}}_k^T} \right)} \right] = 0 \end{aligned} d(Kk)d[tr(Pk)]=02(HkPk)T+2KkHkPkHkT+2KkR=2PkHkT+2KkHkPkHkT+2KkVkRVkT=2[PkHkT+Kk(HkPkHkT+VkRVkT)]=0

最终,终于得到扩展卡尔曼滤波器的增益。
K k = P k − H k T ( H k P k − H k T + V k R V k T ) − 1 = P k − H k T H k P k − H k T + V k R V k T {{\bf{K}}_k} = {\bf{P}}_k^ - {\bf{H}}_k^T{\left( {{{\bf{H}}_k}{\bf{P}}_k^ - {\bf{H}}_k^T + {{\bf{V}}_k}{\bf{RV}}_k^T} \right)^{ - 1}} = \frac{{{\bf{P}}_k^ - {\bf{H}}_k^T}}{{{{\bf{H}}_k}{\bf{P}}_k^ - {\bf{H}}_k^T + {{\bf{V}}_k}{\bf{RV}}_k^T}} Kk=PkHkT(HkPkHkT+VkRVkT)1=HkPkHkT+VkRVkTPkHkT

4、估计误差协方差矩阵化简

下面对估计误差协方差矩阵 P k {{\bf{P}}_k} Pk进行进一步化简,将 K k {{\bf{K}}_k} Kk的表达式代入:
P k = P k − − P k − H k T K k T − K k H k P k − + K k H k P k − H k T K k T + K k V k R V k T K k T = P k − − P k − H k T K k T − K k H k P k − + K k ( H k P k − H k T + V k R V k T ) K k T = P k − − P k − H k T K k T − K k H k P k − + P k − H k T H k P k − H k T + V k R V k T ( H k P k − H k T + V k R V k T ) K k T = P k − − P k − H k T K k T − K k H k P k − + P k − H k T K k T = P k − − K k H k P k − = ( I − K k H k ) P k − \begin{aligned} {{\bf{P}}_k} &= {\bf{P}}_k^ - - {\bf{P}}_k^ - {\bf{H}}_k^TK_k^T - {K_k}{{\bf{H}}_k}{\bf{P}}_k^ - + {K_k}{{\bf{H}}_k}{\bf{P}}_k^ - {\bf{H}}_k^TK_k^T + {K_k}{{\bf{V}}_k}R{\bf{V}}_k^TK_k^T\\\\ &= {\bf{P}}_k^ - - {\bf{P}}_k^ - {\bf{H}}_k^TK_k^T - {K_k}{{\bf{H}}_k}{\bf{P}}_k^ - + {K_k}\left( {{{\bf{H}}_k}{\bf{P}}_k^ - {\bf{H}}_k^T + {{\bf{V}}_k}R{\bf{V}}_k^T} \right)K_k^T\\\\ &= {\bf{P}}_k^ - - {\bf{P}}_k^ - {\bf{H}}_k^TK_k^T - {K_k}{{\bf{H}}_k}{\bf{P}}_k^ - + \frac{{{\bf{P}}_k^ - {\bf{H}}_k^T}}{{{{\bf{H}}_k}{\bf{P}}_k^ - {\bf{H}}_k^T + {{\bf{V}}_k}{\bf{RV}}_k^T}}\left( {{{\bf{H}}_k}{\bf{P}}_k^ - {\bf{H}}_k^T + {{\bf{V}}_k}R{\bf{V}}_k^T} \right)K_k^T\\\\ &= {\bf{P}}_k^ - - {\bf{P}}_k^ - {\bf{H}}_k^TK_k^T - {K_k}{{\bf{H}}_k}{\bf{P}}_k^ - + {\bf{P}}_k^ - {\bf{H}}_k^TK_k^T\\\\ &= {\bf{P}}_k^ - - {K_k}{{\bf{H}}_k}{\bf{P}}_k^ - \\\\ &= \left( {{\bf{I}} - {K_k}{{\bf{H}}_k}} \right){\bf{P}}_k^ - \end{aligned} Pk=PkPkHkTKkTKkHkPk+KkHkPkHkTKkT+KkVkRVkTKkT=PkPkHkTKkTKkHkPk+Kk(HkPkHkT+VkRVkT)KkT=PkPkHkTKkTKkHkPk+HkPkHkT+VkRVkTPkHkT(HkPkHkT+VkRVkT)KkT=PkPkHkTKkTKkHkPk+PkHkTKkT=PkKkHkPk=(IKkHk)Pk


5、全文总结

下面总结扩展卡尔曼滤波的5大公式:

先验估计公式:( u k {{\bf{u}}_k} uk是已知量, x ^ k − 1 {{\bf{\hat x}}_{k - 1}} x^k1是上一时刻的后验估计)
x ^ k − = f ( x ^ k − 1 , 0 , u k ) {\bf{\hat x}}_k^ - = f\left( {{{{\bf{\hat x}}}_{k - 1}},{\bf{0}},{{\bf{u}}_k}} \right) x^k=f(x^k1,0,uk)

后验估计公式:
x ^ k = x ^ k − + K k ( z k − h ( x ^ k − , 0 ) ) {\bf{\hat x}}_k^{} = {\bf{\hat x}}_k^ - + {{\bf{K}}_k}\left( {{{\bf{z}}_k} - h\left( {{\bf{\hat x}}_k^ - ,{\bf{0}}} \right)} \right) x^k=x^k+Kk(zkh(x^k,0))

卡尔曼增益计算公式:
K k = P k − H T ( H P k − H T + V k R V k T ) − 1 {{\bf{K}}_k} = {\bf{P}}_k^ - {{\bf{H}}^T}{\left( {{\bf{HP}}_k^ - {{\bf{H}}^T} + {{\bf{V}}_k}{\bf{RV}}_k^T} \right)^{ - 1}} Kk=PkHT(HPkHT+VkRVkT)1

先验估计协方差更新公式:
P k − = A k P k − 1 A k T + W k Q W k T {\bf{P}}_k^ - = {{\bf{A}}_k}{\bf{P}}_{k - 1}^{}{\bf{A}}_k^T + {{\bf{W}}_k}{\bf{QW}}_k^T Pk=AkPk1AkT+WkQWkT

后验估计协方差矩阵更新公式:
P k = ( I − K k H ) P k − {\bf{P}}_k^{} = \left( {{\bf{I}} - {{\bf{K}}_k}{\bf{H}}} \right){\bf{P}}_k^ - Pk=(IKkH)Pk

与标准的卡尔曼滤波类似,在使用扩展卡尔曼滤波进行递归滤波时,需要我们给出0时刻的后验估计值初值 x ^ 0 {\bf{\hat x}}_0^{} x^0,以及后验估计误差协方差矩阵初值 P 0 {\bf{P}}_0^{} P0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江湖上都叫我秋博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值