在算法交易中 KOHONEN 神经网络的实际应用 第二部分优化和预测

搜索最优的 EA 参数

共同原则

在很多交易平台中都解决了机器人优化的问题,包括 MetaTrader。嵌入的测试器提供了各种工具、高级算法、分布式计算和细粒度统计评估。然而,从用户的角度来看,在优化过程中,总是有一个更为关键的最后阶段,即在分析程序生成的大量信息的基础上,选择最终工作参数的阶段。在之前处理 Kohonen 图并在本网站上发布的文章中,提供了可视化分析优化结果的示例。但是,这意味着用户要自己执行专家分析。理想情况下,赫兹量化软件希望从神经网络得到更具体的建议。总之,算法交易是通过程序进行交易,而不涉及用户。

完成优化后,我们通常会收到一份包含许多选项的长测试报告。根据要排序的列,我们从其深度提取绝对不同的设置,这意味着在相关标准上的最佳性,如利润、夏普比率等。即使我们已经确定了我们最信任的标准,系统通常也会提供几个具有相同结果的设置。如何选择呢?

有些交易者采用自己的综合标准,将几个标准指数纳入计算中——使用这种方法,在报告中获得相同序列的可能性实际上更小。然而,事实上,他们将问题转化为上述标准的元优化领域(如何正确选择其公式?),而这是一个单独的主题。因此,我们将返回到分析标准优化结果。

在我看来,选择最佳的EA参数集必须基于搜索目标函数值范围内最长持续的“高原”,而不是基于搜索此类函数的最大值。在交易环境中,“高原”的水平可与平均盈利能力进行比较,而其长度可与可靠性进行比较,即系统的稳健性和稳定性。

在赫兹量化软件有目的地考虑了第一部分中的一些数据分析技术之后,我们建议可以使用聚类来搜索这样的“高原”。

不幸的是,没有统一或通用的方法来获得具有所需特征的集群。特别是,如果集群的数量“太大”,它们就会变小,并显示出重新学习的所有症状——它们很难概括信息。如果有“太少”的集群,那么它们是相当少的训练,所以他们接收到自己的样本是根本不同的。“太”这个词没有任何明确的定义,因为每个任务、数据数量和数据结构都有一个特定的阈值。所以,通常建议进行几次实验。

集群的数量在逻辑上与图的大小和应用的任务相关。在我们的例子中,前一个因素只在一个方向上起作用,因为我们以前决定通过公式(7)设置大小。因此,知道了这个大小,我们就得到了集群数量的上限——它们中的任何一个都不能超过一侧的大小。另一方面,根据应用的任务,只有一对集群可能适合我们:“好”和“坏”设置。这是可以进行实验的范围。所有这些都只适用于基于清楚指示集群数量的算法,如 K-Means。我们的替代算法没有这样的设置,但是,由于按质量排列集群,我们可以从我们的考虑中排除数字高于给定集群的所有集群,

然后我们将尝试使用Kohonen网络执行集群化。然而,在赫兹量化软件开始练习之前,我们必须讨论一个更好的观点。

许多机器人在很大的参数空间内进行了优化,因此,采用遗传算法进行优化,它节省了时间和资源。然而,它有一个特殊的特点,即“陷入”盈利领域。原则上,这就是目的。然而,就 Kohonen 图而言,它不是很好。问题是,Kohonen映射对输入空间中的数据分布很敏感,并实际反映在生成的拓扑中。由于早期遗传算法排除了参数的错误版本,因此它们发生的几率比遗传的好版本要小得多。因此,Kohonen网络可能忽略了在所发现的良好版本附近的目标函数的危险谷。由于市场特征总是波动的,因此避免此类参数是至关重要的,在这些参数中,左或右的步骤会导致损失。

以下是解决问题的方法:

  1. 放弃遗传优化而偏向于全优化,由于不可能完全实现,可以采用层次化的方法,即先大步进行遗传优化,对感兴趣的区域进行局部化,然后在其中进行全优化(然后使用Kohonen网络进行分析),这也是一种想法,要优化的参数列表的过度扩展为系统提供了自由度,这是因为它变得不稳定;第二,优化转化为拟合;因此,建议根据物理平均值为较大部分的参数选择永久值。例如,在基础分析上(如根据策略类型选择时间段:日内策略一天,中期策略一周等),可以减少优化空间,放弃遗传;
  2. 要多次重复遗传算法优化,使用最大值和最小值以及目标函数的零作为标准;例如,可以执行三次优化:
    • 根据获利因子 (PF), 与通常一样;
    • 根据反向质量,即 1/PF;
    • 根据公式 (min(PF, 1/PF) / max(PF, 1/PF)) ,它会收集1附近的统计数据;
    然后,整合所有优化的结果,并将其作为一个统一的整体进行分析;
  3. 这是一个值得研究的半度量:用一个不包括优化指标的度量来构造Kohonen图(实际上,所有的经济指标都不是EA参数);换句话说,在网络教学中,神经元权重和输入之间的相似性的度量必须由选择的组件来计算。与EA参数相关;逆向度量也很有趣,因为接近度量仅由经济指标计算,我们可能会看到参数平面中的拓扑分散,这提供了系统不稳定的证据;在这两种情况下,神经元的权重都是以一种完全的方式进行拟合的 - 根据所有组件。

最后一个版本 N3 意味着网络拓扑将只反映EA参数的分布(或经济指标,取决于方向)。事实上,当我们在优化表的整行上训练网络时,诸如利润、提取和交易数量等列构成了神经元的总分布,其程度不小于EA参数的分布。这有助于对视觉分析问题有一个全面的了解,并得出哪些参数对哪些指标影响最大的结论。但这不利于分析我们的参数,因为它们的实际分布会被经济指标所改变。

原则上,在分析优化结果的情况下,将输入向量分为两个逻辑上分离的组件:EA输入及其索引(输出)。在全矢量的基础上训练一个Kohonen网络,我们试图确定“输入”和“输出”(双向无条件关系)的依赖性。当网络只在一部分功能上学习时,我们可以尝试看到有向关系:如何根据“输入”对“输出”进行聚集,反之亦然,如何根据“输出”对“输入”进行聚集。我们将考虑这两个选项。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赫兹量化软件

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值