Python下使用sklearn绘制ROC曲线(超详细)

什么是ROC曲线?可以参见(https://blog.csdn.net/hesongzefairy/article/details/104295431

现在我们知道ROC曲线上的一组组(FPR,TPR)值是通过改变阈值得到,那么具体在程序中是如何实现的?

首先我们需要了解sklearn.metrics中的roc_curve方法(metrics是度量、指标,curve是曲线)

roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=None)

参数含义:

y_true:简单来说就是label,范围在(0,1)或(-1,1)的二进制标签,若非二进制则需提供pos_label。

y_score:模型预测的类别概率值。

pos_label:label中被认定为正样本的标签。若label=[1,2,2,1]且pos_label=2,则2为positi

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值