什么是ROC曲线?可以参见(https://blog.csdn.net/hesongzefairy/article/details/104295431)
现在我们知道ROC曲线上的一组组(FPR,TPR)值是通过改变阈值得到,那么具体在程序中是如何实现的?
首先我们需要了解sklearn.metrics中的roc_curve方法(metrics是度量、指标,curve是曲线)
roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=None)
参数含义:
y_true:简单来说就是label,范围在(0,1)或(-1,1)的二进制标签,若非二进制则需提供pos_label。
y_score:模型预测的类别概率值。
pos_label:label中被认定为正样本的标签。若label=[1,2,2,1]且pos_label=2,则2为positi