聊聊客户关系管理与数据挖掘

0?wx_fmt=jpeg

客户关系管理 (Customer relationship management, CRM),对每个公司来说,都是非常重要的。客户关系管理大致可以分为四个维度:

  1. 客户识别

  2. 吸引客户

  3. 客户维系

  4. 客户拓展

什么是客户识别呢?客户识别也称客户获取,它的目的是定向出那些最有可能成为客户或者给公司带来利润最多的客户。客户识别主要包含定向客户分析和客户分群。定向客户分析根据分析客户的潜在特性来寻找带来利润最大的客户分群,而客户分群是将整个客户群体分成若干个小的群体,使得每个小群体内部相似度较大,同时各个小群体之间具有一定的区别。

辨识了客户,接下来就需要吸引客户,进而使得客户给公司带来利润。一种吸引客户的方式就是直销。直销就是通过多种渠道激励客户,进而促成订单的促销过程。

吸引了客户,如果客户对商品不满意,那么商家就需要想办法了解客户哪不满意,进而采取相应的对策,以挽留客户。挽留客户是客户关系管理中非常重要的组成部分。能否挽留客户,关键在于客户的满意度如何。要知道客户的满意度,就需要分析,检测,或者预测客户行为的变化,进而采取恰当的营销活动。为了挽留客户,完善的客户画像,精准的推荐系统,恰当的留存分析都可以起到一定的作用。

只做到上述三点还不够,真正实现更多的利润,需要拓展更多的客户,尽量挖掘潜在客户,并对其营销。要拓展客户,需要客户生命周期价值分析,增销以及交叉营销等。客户生命周期价值就是值某个客户在某商家留存期间给商家带来的利润分析。增量和交叉销售主要依赖于捆绑销售,发现商品之间的关联性,然后推荐相关商品,增加销售量,获得更多利润。

这四个维度并不相互独立,而是相互关联,比如利用数据挖掘技术可以识别客户别,发现客户中潜在的一些特征,有利于发展新的客户。识别出了即将流失的客户,有利于作出相应对策,进而挽留客户。数据挖掘方法可以实现以下一种或多种数据模型:

1 关联模型

2 分类模型

3 聚类模型

4 预测模型

5 回归模型

6 序列发现

7 可视化

关联模型旨在发现商品之间的关联,交叉销售通常需要基于关联模型来实现。常用的关联模型工具就是统计和先验算法。

分类模型是数据挖掘中最常用的学习模型之一。这种模型就是基于客户的历史数据来预测客户将来的行为,对客户将来可能会有的行为进行预测。常用的分类算法是神经网络,决策树,支持向量机等。

聚类模型即为将一个大的群体分割成若干个小的群体的过程。跟聚类不同之处在于,分类模型是有监督的模型,需要事先知道样本的类别,而聚类是无监督的,无需事先知道样本的类别。常用的聚类方法有k-means以及神经网络等。

预测模型的输出是连续型的,跟分类模型不同点在于分类模型的输出是离散的。商品的需求量预测就是一个典型的预测模型。常用的预测模型有神经网络以及生存分析等模型。

回归模型是一种统计估计方法,基于样本数据给出乡音的预测。应用场景主要有曲线拟合,预测等。常用回归模型有线性回归和逻辑回归等。

序列发现模型即为发现模式关联,其目的在于对产生序列的过程状态进行建模。常用的序列发现算法是基于统计和集合论的。

可视化是指展现数据,方便用户查看复杂模式。这种模型通常跟其他数据挖掘模型相结合,进而更清晰地展示挖掘所得模式或关系。

下面再列举一些常用的数据挖掘算法

1 关联规则

2 决策树

3 遗传算法

4 神经网络

5 k-近邻

6 线性回归或逻辑回归

7 支持向量机

8 深度学习

9 聚类算法

10 马尔科夫链模型

在探索智慧旅游的新纪元中,一个集科技、创新服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值