噪声系数以及测试方法概述



一、概述
噪声是指由带电粒子的随机运动引起的电压和电流波动,存在于所有的电子系统中。电子元器件增加的噪声会隐藏或掩盖低电平信号,增加语音或者视频接收的障碍,数字系统中位检测的不确定性并导致雷达错误。我们通常以噪声因子或噪声系数的形式测量电路元件的噪声贡献。
二、噪声系数和噪声因子
噪声因子定义为输入端的信噪比除以输出端的信噪比。只要输入和输出的测量带宽相同,噪声因子总是大于 1。

噪声系数与噪声因子关系如下:

噪声系数和噪声因子的定义适用于任何电气网络,包括包含混频器和 IF 放大器(上变频器或下变频器)的变频网络。
三、测量噪声系数的三种方法
1、噪声测试仪测试
噪声仪是测量噪声系数最直接的方法,可在特定的频率范围内测量噪声系数。噪声测试仪能够同时显示增益和噪声系数来帮助测量。噪声测试仪的测试装置图如下:

噪声测试仪测试噪声系数的核心是Y系数法。首先,噪声测试仪本身是一台接收机,可以用来测试输入的噪声功率;其次噪声测试仪需要控制一个噪声源的加电和不加电状态,对被测件(DUT)进行测试。通常噪声分析仪在超低的噪声测量中准确度更高一些,当测量很高的噪声系数时,测量结果会不准确。
2、增益法
目前噪声系数的测量主要使用专用的噪声系数测试仪,但当不具备这种专用设备或者所要求测试频率范围不在其范围时,可以采用频谱分析仪测量噪声系数,即增益法,该方法对于频率在所用频谱仪频率范围内的被测件都能进行测量。增益法是基于噪声系数的定义推导出来的测试方法,推导过程如下:
基于噪声系数的定义:

可以得到NF测量公式:
NF = POUT - (-174dBm/Hz + 20 * log10(BW) + 增益)
Pout是已测的噪声功率谱密度,-174 dBm/Hz是290°K(室温)时环境噪声的功率谱密度,BW是频率带宽,Gain是系统的增益。式中每个变量均为对数,为简化公式,我们可以直接测量输出噪声功率谱密度(dBm/Hz),这时式子变为:
NF = POUT + 174dBm/Hz - 增益
为了使用增益法测量噪声系数,DUT的增益需要预先确定的。DUT的输入需要端接特性阻抗(射频应用为50Ω,视频/电缆应用为75Ω)。输出噪声功率谱密度可使用频谱分析仪测量。
增益法测试装置图如下:

只要频谱分析仪允许,增益法可适用于任何频率范围内。最大的限制来自于频谱分析仪的噪声基底。在公式中可以看到,当噪声系数较低(小于10dB)时,(POUTD - 增益)接近于-170dBm/Hz,通常LNA的增益约为20dB。这样我们需要测量-150dBm/Hz的噪声功率谱密度,这个值低于大多数频谱仪的噪声基底。在我们的例子中,系统增益非常高,因而大多数频谱仪均可准确测量噪声系数。类似地,如果DUT的噪声系数非常高(比如高于30dB),这个方法也非常准确。
3、Y系数法
Y系数法是测量噪声系数的一种典型方法。Y系数是指当被测件(DUT)的输入端处于2个不同的噪声功率时,在DUT的输出端得到的2个相应的噪声功率之比。噪声源是Y系数法测量必不可少的设备,噪声源是能产生2种不同噪声功率的噪声发生器,一般需要用DC脉冲电源驱动电压,当DC驱动电压供电时相当于噪声源开,称为热态,此时输出大的噪声功率;DC驱动电源关闭时相当于噪声源关断,称为冷态,此时输出常温下的噪声功率。噪声源的热温与冷温的差值称为噪声源的超噪比(ENR)。
Y系数法装置图如下:

ENR头通常需要高电压的DC电源。比如KEYSIGHT 346B噪声源需要28VDC。这些ENR头能够工作在非常宽的频段(例如KEYSIGHT 346B为10MHz至18GHz),在特定的频率上本身具有标准的噪声系数参数。 
噪声系数的计算公式如下:

上式中ENR的NF值通常根据噪声源来确认,Y是输出噪声功率谱密度在噪声源开启和关闭时的差值 ,Y = ENR/F+1(推导过程不在此陈述)。
KEYSIGHT N9020B使用Y因数法测量噪声系数测试噪声系数步骤如下:
a、校准
在KEYSIGHT上设置好噪声源ENR,连接28V直流电压到噪声源头,进行校准。
b、测试
噪声源头连接到DUT输入,DUT输出连接到频谱仪,即可测试出DUT的NF与增益。
四、总结
测量接收机噪声系数的三种方法,每种方法都有其优缺点,适用于特定的应用场景。噪声系数测试仪法最直接简单,在低噪声测量中准确度更高;增益法可用于所有频段,尤其适合测量较高的噪声系数,但受频谱仪的基底噪声限制;Y系数法适用于所有的系统噪声系数测试,准确度较高。

### 使用Y因子法测试低噪声放大器(LNA)的噪声系数 #### Y因子法原理概述 Y因子法是一种广泛采用的技术用于测量电子设备特别是放大器的噪声性能。该方法通过比较被测器件(DUT)在两个不同温度下的输出噪声电平来计算其噪声系数[^2]。 #### 设备准备 为了执行Y因子法测试,需要以下仪器: - 噪声源:提供可调节的输入信号功率水平,在低温(Tc, 冷状态)和高温(Th, 热状态)之间切换。 - 频谱分析仪或专用噪声系数分析仪:用来接收并处理来自LNA的输出信号。 - 被测件(DUT),即待评估的低噪声放大器(LNA)[^3]。 #### 参数设定与校准 设置好硬件连接之后,需对整个系统进行必要的校正工作以消除外部因素的影响。这通常涉及到利用已知特性的标准负载来进行绝对功率校准以及环境条件补偿等操作[^4]。 #### 数据采集过程 当完成上述准备工作后,则可以开始实际的数据收集流程: 对于每一个选定的工作频率点f, 1. 将噪声源置于冷态Tc,并记录此时由频谱仪读取到的平均输出电压Vout_c; 2. 切换至热态Th重复同样的步骤得到相应的Vout_h值; 基于这两个不同的输出响应,即可求得所谓的“Y因数”,它反映了由于温度变化引起的变化程度: \[ Y=\frac{P_{out\_h}}{P_{out\_c}} \] 其中\( P_{out} \)代表输出端口处接收到的实际功率密度。 #### 计算最终结果 最后一步便是依据所获取的信息推导出目标参数——噪声系数NF(dB): \[ NF=TN-\left(\frac{T_0}{G}\right)\cdot\left[\frac{(Y-1)}{\ln(Y)}\right]+NFSM \] 这里TN指的是室温条件下理想匹配电阻产生的单边带(Single Side Band)噪声温度; T0固定为290K作为参考基准面; G表示总的可用增益而NFSM则是指测量系统的固有误差项。 ```python import math def calculate_noise_figure(Y_factor, system_temperature=290, reference_temp=290, gain_db=0, measurement_error_db=0): """ Calculate the noise figure using Y-factor method. Parameters: Y_factor : float Ratio of output power at hot and cold states. system_temperature : int or float, optional System temperature in Kelvin (default is 290 K). reference_temp : int or float, optional Reference temperature used to define standard conditions (default is 290 K). gain_db : int or float, optional Gain of DUT in decibels (dB). Default value assumes no additional gain contribution from other components. measurement_error_db : int or float, optional Measurement error introduced by test setup expressed as a dB offset. Returns: nf : float Noise Figure calculated based on provided parameters. """ # Convert gains into linear scale for calculations gain_linear = 10 ** (gain_db / 20) # Compute theoretical minimum achievable noise factor due solely to thermal agitation within matched resistors min_theoretical_nf = ((system_temperature/reference_temp)*(1/gain_linear)) # Apply correction term derived via measured ratio between heated & cooled source outputs y_correction_term = (((Y_factor - 1)/math.log(Y_factor))) # Add any residual errors associated with instrumentation itself total_measurement_offset = 10**(measurement_error_db/10) # Combine all terms together according to established formulae final_nf = min_theoretical_nf * y_correction_term + total_measurement_offset return round(final_nf*10, ndigits=2) # Example usage demonstrating how one might call this function during an actual experiment example_yfactor = 1.875 # Hypothetical example value obtained through experimentation calculated_nf = calculate_noise_figure(example_yfactor) print(f"The estimated Noise Figure is {calculated_nf:.2f} dB.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值