面试总结(2)--逻辑回归、线性回归、CNN、LSTM、GRU、激活函数

一.LR推导

逻辑回归本质上是线性回归,只是在特征到结果的映射种加入一层逻辑函数g(z)。即先把特征线性求和,然后使用函数g(z)作为假设函数预测。g(z)为sigmoid函数

sigmoid导数如下:

  • 逻辑回归为什么用sigmoid函数?

优点:实现简单,Sigmoid函数是平滑的,可以无限求导。可以从(-∞,+∞)映射到(0,1),符合概率分布

缺点:导数在(0,0.25),容易出现梯度消失;只能处理二分问题

逻辑回归认为函数其概率服从伯努利分布,将其写成指数族分布的形式。能够推导出sigmoid函数的形式。

  • 逻辑回归损失函数?(极大似然函数)

二.线性回归

表达式:y=wx+b

损失函数:

多元线性回归参考moonbaby博客--多元回归

三.LR与线性回归的区别

线性回归用来做预测,LR用来做分类。线性回归用来拟合函数,LR用来预测函数。线性回归用最小二乘法计算参数,LR用最大似然估计计算参数。线性回归易受到异常值影响,LR对异常值较好稳定性。

线性回归是解决回归问题。 结果是连续型,主要解决房租预测等问题。

逻辑回归是分类问题,不是回归问题,结果是离散型,主要解决二分类问题。

四.CNN

Relu

在每个卷积层之后,通常会立即应用一个非线性层(或激活层)。其目的是给一个在卷积层中刚经过线性计算操作(只是数组元素依次(element wise)相乘与求和)的系统引入非线性特征。

池化层

夹在连续的卷积层中间, 用于压缩数据和参数的量,减小过拟合。
简而言之,如果输入是图像的话,那么池化层的最主要作用就是压缩图像。

卷积神经网络优点及CNN介绍

参考https://blog.csdn.net/qq_32793701/article/details/82192957

五.LSTM

参考moonbaby博客--LSTM

六.常见激活函数及区别

1.激活函数

激活函数(Activation Function),就是在人工神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。

在神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数。引入激活函数是为了增

加神经网络模型的非线性。没有激活函数的每层都相当于矩阵相乘。就算你叠加了若干层之后,无非还是个矩阵相乘。

2.为什么使用激活函数

如果不用激活函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,这种情况就是最原始的感知机(Perceptron)。

如果使用的话,激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。

3.常见激活函数

  • Sigmoid函数

它能够把输入的连续实值变换为0和1之间的输出,特别的,如果是非常大的负数,那么输出就是0;如果是非常大的正数,输出就是1.

缺点:

  1. 容易导致梯度消失
  2. Sigmoid 的输出不是0均值

问:梯度消失和梯度爆炸?改进方法。
解决梯度爆炸:
a.可以通过梯度截断。通过添加正则项。
解决梯度消失:
a.将RNN改掉,使用LSTM等自循环和门控制机制。
b.优化激活函数,如将sigmold改为relu
c.使用batchnorm
d.使用残差结构

  • Tanh函数

和sigmoid差不多,但值域为[-1,1]
解决了Sigmoid函数的不是zero-centered输出问题。
梯度消失和幂运算的问题仍然存在

Relu激活函数

  1. 解决了梯度消失问题
  2. 计算速度非常快,只需要判断输入是否大于0
  3. 收敛速度远快于sigmoid和tanh,因为这两个梯度最大为0.25,而relu为1

缺点:

  1. 输出不是zero-centered
  2. 原点不可导

参考常见激活函数及其优缺点

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值