动态规划入门-大学线代的矩阵链相相乘

Description
设A1,A2,…,An为矩阵序列,A​i是阶为P​i−1∗P​i的矩阵(1≤i≤n)。

试确定矩阵的乘法顺序,使得计算A1 A2 … An 过程中元素相乘的总次数最少。

Input
多组数据

第一行一个整数n(n <= 300),表示一共有n个矩阵。

第二行n个整数B1, B2, B3… Bn(Bi <= 100),第i个数Bi表示第i个矩阵的行数和第i-1个矩阵的列数。

等价地,可以认为第j个矩阵Aj(1 <= j <= n)的行数为Bj,列数为Bj+1。

Output
对于每组数据,输出一个最优计算次数

Sample Input
5
74 16 58 58 88 80
5
10 1 50 50 20 5
Sample Output
342848
3650

有两种解决办法,一种是递推,一种是递归
递归方法当数据量较大时,系统会发生爆栈,重复递归了大量数据
递推方法是把数据保存在数组中,当遇到一个大型问题时调用子问题的数组数据即可得到结果

#include<iostream>
using namespace std;
long long d[350][350];

//int func(int *p,int i,int j){ //递归方法
//	if(i == j) return 0;
//	d[i][j] = 1e18;
//	for(int k = i; k <= j-1; k++){
//		int t1 = func(p,i,k);
//		int t2 = func(p,k+1,j);
//		int temp = t1+t2+p[i-1]*p[k]*p[j];
//		if(temp < d[i][j]){
//			d[i][j] = temp;	
//		} 		
//	}
//	return d[i][j];
//}

int func(int *p,int n){  //递推方法
	for(int r = 2; r <= n; r++){
		for(int i =1 ; i <= n-r+1; i++){
			int j = i+r-1;
			d[i][j] = d[i+1][j] + p[i-1]*p[i]*p[j];
			for(int k =i+1; k<=j-1;k++){
				int t = d[i][k]+d[k+1][j]+p[i-1]*p[k]*p[j];
				if(t < d[i][j]){
					d[i][j]= t;
				}
			}
		}
	}
	return d[1][n];
}

int main(){
	int n;
	while(scanf("%d",&n)!=EOF){
		int p[n+1];
		for(int i = 0; i <= n; i++){
			cin>>p[i];
		}
		for(int i = 0; i <= 350; i++){
				d[i][i] =0;
		}
		printf("%d\n",func(p,n));
	}
	
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值