Description
设A1,A2,…,An为矩阵序列,Ai是阶为Pi−1∗Pi的矩阵(1≤i≤n)。
试确定矩阵的乘法顺序,使得计算A1 A2 … An 过程中元素相乘的总次数最少。
Input
多组数据
第一行一个整数n(n <= 300),表示一共有n个矩阵。
第二行n个整数B1, B2, B3… Bn(Bi <= 100),第i个数Bi表示第i个矩阵的行数和第i-1个矩阵的列数。
等价地,可以认为第j个矩阵Aj(1 <= j <= n)的行数为Bj,列数为Bj+1。
Output
对于每组数据,输出一个最优计算次数
Sample Input
5
74 16 58 58 88 80
5
10 1 50 50 20 5
Sample Output
342848
3650
有两种解决办法,一种是递推,一种是递归
递归方法当数据量较大时,系统会发生爆栈,重复递归了大量数据
递推方法是把数据保存在数组中,当遇到一个大型问题时调用子问题的数组数据即可得到结果
#include<iostream>
using namespace std;
long long d[350][350];
//int func(int *p,int i,int j){ //递归方法
// if(i == j) return 0;
// d[i][j] = 1e18;
// for(int k = i; k <= j-1; k++){
// int t1 = func(p,i,k);
// int t2 = func(p,k+1,j);
// int temp = t1+t2+p[i-1]*p[k]*p[j];
// if(temp < d[i][j]){
// d[i][j] = temp;
// }
// }
// return d[i][j];
//}
int func(int *p,int n){ //递推方法
for(int r = 2; r <= n; r++){
for(int i =1 ; i <= n-r+1; i++){
int j = i+r-1;
d[i][j] = d[i+1][j] + p[i-1]*p[i]*p[j];
for(int k =i+1; k<=j-1;k++){
int t = d[i][k]+d[k+1][j]+p[i-1]*p[k]*p[j];
if(t < d[i][j]){
d[i][j]= t;
}
}
}
}
return d[1][n];
}
int main(){
int n;
while(scanf("%d",&n)!=EOF){
int p[n+1];
for(int i = 0; i <= n; i++){
cin>>p[i];
}
for(int i = 0; i <= 350; i++){
d[i][i] =0;
}
printf("%d\n",func(p,n));
}
return 0;
}