CountVectorizer与TfidfVectorizer的区别

博客介绍了CountVectorizer+TfidfTransformer组合及TfidfVectorizer的使用。CountVectorizer将文本词语转为词频矩阵,TfidfTransformer统计词语TFIDF值。TfidfVectorizer可将原始文档集合转化为tf - idf特性矩阵,相当于前两者组合使用,它将二者封装在一起。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CountVectorizer+TfidfTransformer组合使用

CountVectorizer会将文本中的词语转换为词频矩阵,它通过fit_transform函数计算各个词语出现的次数,通过get_feature_names()可获得所有文本的关键词,通过toarray()可看到词频矩阵的结果。
TfidfTransformer用于统计vectorizer中每个词语的TFIDF值。

TfidfVectorizer

将原始文档的集合转化为tf-idf特性的矩阵,相当于CountVectorizer配合TfidfTransformer使用的效果。
即TfidfVectorizer类将CountVectorizer和TfidfTransformer类封装在一起。

导入包:

from skleran.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值