4个不同的小球放入3个不同的盒子中(盒子不允许为空),一共有______种不同的放法

博客探讨了如何将四个不同的小球放入三个盒子中的排列组合问题。通过C42种方式选择两个球作为一组,再将这组与其他两个球在三个位置上全排列,得到A33种情况。总方案数为C42A33=36。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由题意知四个不同的小球全部随意放入三个不同的盒子中,则必须有1个盒子里放2个球,其余的三个盒子各放1个,
首先要从4个球中选2个作为一个元素,有C42种结果,
同其他的两个元素在三个位置全排列有A33种情况,
根据分步乘法原理知共有 C 4 2 A 3 3 C_{4}^{2}A_{3}^{3} C42A33=36;
故答案为:36

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值