同等学习计算机科学与技术真题-2020年

博客围绕数学基础课程展开,包含用逻辑符号表达语句、填空题和计算题。逻辑符号表达涉及确诊者症状、老人与宠物喜好;填空题有集合子集数量、学生排列方法、函数系数;计算题包括用与非联结词表示逻辑关系及组合数计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一部分 数学基础课程

一、(共5分)用逻辑符号表达下列语句(论域为包含一切事物的合集)

  1. (2分)确诊者并不都有症状(注:需给出两种形式表达,一种用存在量词,一种用全称量词)
    答:
    F(x): x是确诊者,G(x):x有症状
    ∃x(F(x)∧¬G(x))
    ¬∀x(F(x) →G(x))
  2. (3分)有些老人不喜欢宠物
    答:
    F(x): x是老人,G(x):x是宠物,L(x,y): x喜欢y
    ∃x(F(x)∧∀y(G(y) →¬L(x, y)))

二、填空题(第1小题每空1分,第2~3小题每空2分,共6分)

  1. 设集合A有50个元素,则由集合A可构成___250(2的50次方)_____个子集。其中有___249(2的49次方)_____个子集其元素个数为奇数。

  2. 让5位中国籍学生和5位英国籍学生排成一排,要求中国籍学生和英国籍学生交叉出现,即同国籍的学生不能相邻,则有__2*5!*5!____种不同的排法。

  3. 函数 f ( x ) = ( 1 − 3 x ) − 2 f(x)=(1-3x)^{-2} f(x)=(13x)2中, x 4 x^4 x4的系数是_ 5 ∗ 3 4 5*3^4 534_____.

三、计算题(共9分)

  1. (5分)由P↑Q=¬(P∧Q),试仅用与非联结词↑分别表示出:
    (1)¬P
    (2)P∧Q
    (2)P→Q
    答:
    (1)¬P = ¬(P∧P) =P↑P
    (2)P∧Q =¬(¬( P∧Q)) = (P↑Q)↑(P↑Q)
    (3)P→Q= ¬P∨Q = ¬(P∧¬Q)= P↑(Q↑Q)
  2. (4分)对任意正整数n≥2,给出 C ( n , 1 ) + C ( n , 2 ) + … + ( C n , n ) C(n,1) + C(n, 2)+…+(Cn, n) C(n,1)+C(n,2)++(Cn,n)的最简表达式(即计算其值),其中C(n,i)表示从n个元素中取i个元素的组合数。
    答:
    ( 1 + x ) n = C ( n , 0 ) x 0 + C ( n , 1 ) x 1 + C ( n , 2 ) x 2 + … + ( C n , n ) x n (1+x)^n = C(n, 0)x^0+C(n, 1)x^1+C(n, 2)x^2+…+(Cn, n)x^n (1+x)n=C(n,0)x0+C(n,1)x1+C(n,2)x2++(Cn,n)xn
    令x=1得,
    ( 1 + 1 ) n = C ( n , 0 ) + C ( n , 1 ) + C ( n , 2 ) + … + ( C n , n ) = 2 n (1+1)^n = C(n, 0)+C(n, 1)+C(n, 2)+…+(Cn, n) = 2^n (1+1)n=C(n,0)+C(n,1)+C(n,2)++(Cn,n)=2n
    C ( n , 1 ) + C ( n , 2 ) + … + ( C n , n ) = 2 n − C ( n , 0 ) = 2 n − 1 C(n, 1)+C(n, 2)+…+(Cn, n) = 2^n-C(n, 0) = 2^n-1 C(n,1)+C(n,2)++(Cn,n)=2nC(n,0)=2n1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值