相关系列:
目标检测 | yolov1 原理和介绍
目标检测 | yolov2/yolo9000 原理和介绍
目标检测 | yolov3 原理和介绍
目标检测 | yolov4 原理和介绍
目标检测 | yolov5 原理和介绍
目标检测 | yolov6 原理和介绍
目标检测 | yolov7 原理和介绍
目标检测 | yolov8 原理和介绍
目标检测 | yolov9 原理和介绍
目标检测 | yolov10 原理和介绍
IEEE链接:https://ieeexplore.ieee.org/document/10533619
YOLOv8相较于YOLOv7引入了一系列改进,这些改进主要集中在以下几个方面:
- 1.注意力机制:YOLOv8采用了多种注意力机制来增强模型的特征提取能力,如ECA(Efficient Channel Attention)、GAM(Global Attention Mechanism)等,这些注意力机制有助于模型更好地关注图像中的关键信息,提高检测精度。
- 2.卷积层优化:YOLOv8在卷积层上进行了创新,例如使用可变形卷积(Deformable Convolution)和动态卷积(Dynamic Convolution)等技术,这些技术可以提高模型对不同形状和大小目标的适应性。
- 3.主干网络改进:YOLOv8的主干网络也进行了优化,如使用MobileNetV4等轻量化网络结构,以减少模型的计算量并提高检测速度。
- 4.特征融合模块:YOLOv8引入了新的或改进的特征融合模块,例如BiFPN(Bidirectional Feature Pyramid Network)和AFPN(Asynchronous Feature Pyramid Network),这些模块有助于提高模型对多尺度目标的检测能力。
- 5.检测头改进:YOLOv8在检测头也进行了创新,例如使用RT-DETR(Routing Transformer for Detection)等技术,这些技术可以改善模型在不同尺寸目标上的检测效果。
- 6.损失函数和IoU优化:YOLOv8对损失函数和IoU(Intersection over Union)计算方法进行了改进,以提高模型的回归精度和检测性能。
- 7.NMS和其他模块的改进:YOLOv8还对非极大值抑制(Non-Maximum Suppression, NMS)等其他模块进行了优化,以提高检测的准确性和效率。
- 8.轻量化设计:YOLOv8注重模型的轻量化设计,使其更适合在资源受限的设备上运行,例如使用VanillaNet等极简主义网络架构。
- 9.多尺度检测能力:YOLOv8通过改进,如使用SPD-Conv(Spatial Pyramid Depthwise Convolution)等技术,增强了对小目标和多尺度目标的检测能力。
- 10.优化器改进:YOLOv8还可能采用了新的优化器,如Lion等,以进一步提高训练效率和模型性能。
1. 摘要
近年来,You Only Look Once (YOLO)系列目标检测算法因其在实时应用中的速度和准确性而受到广泛关注。本文提出了一种新的目标检测算法YOLOv8,它建立在以前迭代的基础上,旨在进一步提高性能和鲁棒性。受到从YOLOv1到YOLOv7的YOLO架构演变的启发,以及从YOLOv5和YOLOv6等模型的比较分析中获得的见解,YOLOv8结合了关键创新,以实现最佳的速度和准确性。利用注意力机制和动态卷积,YOLOv8引入了专门为小物体检测量身定制的改进,解决了YOLOv7中突出的挑战。此外,语音识别技术的集成增强了算法对基于视频的对象检测的能力,如YOLOv7所示。所提出的算法经过严格的评估,以最先进的基准,显示出卓越的性能,在检测精度和计算效率方面。在不同数据集上的实验结果证实了YOLOv8在不同场景下的有效性,进一步验证了其在实际应用中的适用性。本文通过介绍YOLOv8作为一种通用的高性能算法,为目标检测研究的持续进步做出了贡献,该算法有望满足计算机视觉系统不断发展的需求。
1.1. 介绍
在计算机视觉领域,识别物体可能是一项重要而复杂的任务,其应用遍及安全、观察、自动驾驶汽车、机器人和医学成像等领域。物体定位的目标是在图片或录音中找