【小沐学GIS】blender导入OpenTopography地形数据(BlenderGIS、OSM、Python)

31 篇文章 48 订阅
19 篇文章 2 订阅

1、简介

1.1 blender

https://www.blender.org/
Blender 是一款免费的开源 3D 创作套件,支持整个 3D 管道。使用它强大的工具,你可以轻松创建惊人的 2D/3D 内容。

Blender是一款三维图形图像软件,提供从建模、动画、材质、渲染、到音频处理、视频剪辑等一系列动画短片制作解决方案。Blender拥有方便在不同工作下使用的多种用户界面,内置绿屏抠像、摄像机反向跟踪、遮罩处理、后期结点合成等高级影视解决方案。
在这里插入图片描述

1.2 OpenStreetMap地图

https://www.openstreetmap.org/
https://extract.bbbike.org/
Openstreetmap是一种开源地图,简称osm。其包含图层主要有高速公路、铁路、水系、水域、建筑、边界、建筑物等图层。地址为:https://www.openstreetmap.org
在这里插入图片描述

2、BlenderGIS

https://github.com/domlysz/BlenderGIS

在这里插入图片描述

2.1 下载BlenderGIS

git clone https://github.com/domlysz/BlenderGIS.git

下载如下:
在这里插入图片描述

2.2 安装BlenderGIS

在这里插入图片描述
运行时报错如下:
在这里插入图片描述
如果点击完报下图的错误提示就说明缺少ImageIO文件。去下边的地址下载即可,粘贴到blender安装目录–下方地址。如果没有freeimage文件夹。创建即可

....../BlenderGIS/core/lib/imageio/resources/freeimage/

在下面地址下载freeimage的dll文件:
https://github.com/imageio/imageio-binaries/tree/master/freeimage
https://freeimage.sourceforge.io/download.html

python.exe -m pip install imageio

2.3 申请opentopography的key

https://opentopography.org/
Open Topography是一个提供高空间分辨率的地形数据和操作工具的门户网站。,我们可以通过Open Topography下载LiDAR数据,这些数据主要是包括:美国、加拿大、澳大利亚、巴西、海地、墨西哥和波多黎各等。

Open Topography可以提供我们10个最好的免费的全球栅格和矢量数据源。开放式社区系统是它的优点。通过注册账号后,就可以访问社区更多的功能。此外,它的另一个特点是,它可以提供目前相对最大的、开放式的、免费的LiDAR数据,展示的形式漂亮、整洁。

在这里插入图片描述
为了防止机器人攻击,国外很多网站都使用了 Google reCaptcha 验证码。reCaptcha 对于国外用户非常的友好,但是…对于国内用户就不怎么友好了。究其原因,则是国内网络全线屏蔽 Google 服务,导致 reCaptcha 完全加载不出来。
本方案基于 Header Editor 插件。因此,您需要先在您的浏览器中安装这个插件。
第一步:下载插件
下载离线文件,Header Editor 离线安装文件。
第二步:配置插件
打开 Header Editor 插件的配置页面,选择“导入和导出”选项,并输入URL为https://azurezeng.github.io/static/HE-GoogleRedirect.json,点击下载。
接下来你应该会在“导入”看到相关规则(如果之前导入过,“操作”中的“添加”会显示为“覆盖已有”)。选择“保存”即可。

2.4 抓取卫星地图

点击GIS -> Web geodata -> basemap 就可以抓取需要的地图。
在这里插入图片描述
选择地图来源如下:
在这里插入图片描述
显示地图如下:
在这里插入图片描述
鼠标左键是拖动,鼠标中键是地图级别放大。如果有的瓦片没有刷新出来,可以单击鼠标左键。就会重新载入瓦片。
按E键可以将视口显示的范围内的地图瓦片抓取下来。
添加国内地图

在basemaps文件夹里中servicesDefs.py的文件添加国内地图。
在这里插入图片描述

2.5 生成高度图

按E键可以将视口显示的范围内的地图瓦片抓取下来。
在这里插入图片描述
点击GIS -》Web geodata -> get elevation 载入高度图信息。
在这里插入图片描述
生成地形模型如下:
在这里插入图片描述
然后导出模型为本地文件:
在这里插入图片描述

2.6 获取OSM数据

除了地图之外还可以获取基于OSM(open stream map)网站的 路网信息、建筑体块信息。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

也可以去 OSM网站单独下载楼体块、道路资源 导入到blender中。
blender中导入.osm资源。
在这里插入图片描述

注意:想要导出这些地图和资源 需要将资源塌陷为网格 不然导出的会是空物体。
选中地图 左上角 物体–应用–可视集合体->网格。
在这里插入图片描述

转成网格体之后就可以将物体导出FBX或者OBJ 或者网页最常用的gltf 。

结语

如果您觉得该方法或代码有一点点用处,可以给作者点个赞,或打赏杯咖啡;╮( ̄▽ ̄)╭
如果您感觉方法或代码不咋地//(ㄒoㄒ)//,就在评论处留言,作者继续改进;o_O???
如果您需要相关功能的代码定制化开发,可以留言私信作者;(✿◡‿◡)
感谢各位大佬童鞋们的支持!( ´ ▽´ )ノ ( ´ ▽´)っ!!!

Kitti是一个广泛使用的地面点云数据集,用于自动驾驶和机器人感知研究。该数据集由德国卡尔斯鲁厄理工学院和丰田美国技术研究所共同创建。 Kitti数据集包含来自城市环境中的采样激光雷达(LiDAR)和相机图像数据。这些数据从移动车辆的感知系统中获得,包括音频、雷达和GPS定位等传感器。数据集涵盖了不同的驾驶场景,如城市街道、高速公路和乡村道路,包括白天和夜间的环境。 地面点云数据是一种基于激光雷达扫描获得的点云信息,用于描述地面上的物体和环境。在Kitti数据集中,地面点云数据被广泛应用于道路和地形的建模、障碍物检测和车道线提取等研究。利用地面点云数据,算法和模型可以识别出道路上的车辆、行人、建筑物等对象,并进行环境感知和决策。 进行地面点云数据处理需要使用特定的软件和算法。研究人员可以使用开源工具如PCL(点云库)或自行开发算法来处理Kitti数据集中的地面点云数据。这些算法可以对点云数据进行滤波、分割、分类和重建等操作,以获取有关道路和环境的详细信息。 总之,Kitti数据集中的地面点云数据为自动驾驶和机器人感知研究提供了宝贵的资源。通过对这些数据进行处理和分析,研究人员可以开发出更准确和可靠的感知算法,以实现更安全和智能的自动驾驶系统。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值