tensorflow
文章平均质量分 68
Hit_HSW
软件工程师
展开
-
tensorFlow学习序列——线性拟合模型
1. 模型假设模型假设一组数据满足在一条直线,然而,在采集过程中,存在噪声等因素导致数据在一条直线附近波动,则可以按照最小方差原则进行直线参数(k, b)寻优: y = k * x + b 2. TensorFlow线性拟合代码import tensorflow as tfimport numpy as npx_data = np.float32(np.random.rand(2,100))...原创 2018-04-07 17:29:41 · 558 阅读 · 0 评论 -
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection(VoxelNet模型)
图2.3.1 高效实现总概括原创 2018-04-20 21:02:31 · 6378 阅读 · 15 评论 -
深度学习——3D Fully Convolutional Network for Vehicle Detection in Point Cloud模型实现
1. 参考文献3D Fully Convolutional Network for Vehicle Detection in Point Cloud2. 模型实现'''Baidu Inc. Ref: 3D Fully Convolutional Network for Vehicle Detection in Point CloudAuthor: HSW Date: 2018-05-...原创 2018-05-03 21:44:47 · 2465 阅读 · 8 评论 -
LLNet模型实现——LLNet模型数据读取
1. 简介实现LLNet模型的数据读取接口2. 代码实现# Ref: LLNet: Deep Autoencoders for Low-light Image Enhancement## Author: HSW# Date: 2018-05-11 #import tensorflow as tfimport numpy as npfrom PIL import Image i...原创 2018-05-12 09:29:51 · 2173 阅读 · 1 评论 -
深度学习序列——自编码器(AE)模型
1. 模型简介自编码器是无监督学习的重要的学习方法,因为,该模型实现神经网络学习恒等映射函数h,即 x = h(x)2. 模型实现# Auto-Encoder ## Author: HSW# Date: 2018-05-06#import tensorflow as tfimport numpy as npdef axvier_init(fan_in, fan_out,...原创 2018-05-07 22:18:31 · 4360 阅读 · 0 评论 -
深度学习序列——噪声自编码器(WAE)
1. 模型简介为了提高自编码器的泛化性能和鲁棒性,在输入的数据中,我们加入高斯白噪声,通过深度网络进行学习,以获取“无噪声”情况下的输出数据——有一点向去除噪声,实际上,最开始通过堆叠的自动编码器实现噪声去除。 2. 模型实现(注意:模型和AE的区别就是,输入网络的数据是加噪声的数据,代价函数却采用的是无噪声数据进行计算)# whilt gaussian noise Auto-Encoder #...原创 2018-05-07 22:45:15 · 3843 阅读 · 0 评论 -
深度学习序列——稀疏自编码器模型(SAP)
1. 模型简介(1) 模型要能够学习恒等变换(2) 隐藏层的神经元的活动性满足稀疏性(模型大脑) (3) 隐藏层的权重矩阵同样满足稀疏性(一种正则化方法,实际上,在稀疏编码取得好的效果有启发作用)2. 模型实现# Sparse Auto-Encoder ## Author: HSW# Date: 2018-05-07#import tensorflow as tfimport num...原创 2018-05-07 23:17:06 · 1025 阅读 · 2 评论 -
LLNet模型实现-训练模型
# Ref: LLNet: Deep Autoencoders for Low-light Image Enhancement# # CVPR 2014# # Author: HSW# Date: 2018-05-11import tensorflow as tfimport numpy as np class LLNet_Model(object): def __i...原创 2018-05-24 10:21:27 · 1389 阅读 · 0 评论 -
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation解析(PointNet模型)
原创 2018-04-20 20:41:33 · 2569 阅读 · 0 评论 -
3D Fully Convolutional Network for Vehicle Detection in Point Cloud解析(3D-CNN模型)
原创 2018-04-20 20:28:30 · 2133 阅读 · 2 评论 -
tensorflow学习序列-MNIST集合上进行分类深度卷积网DCNN
在采用深度卷积网进行MNIST数据集进行分类,准确率达到99.2%左右import tensorflow as tfimport mathimport input_datadef weight_variable(shape): initial = tf.truncated_normal(shape,stddev=0.1); return tf.Variable(initial...原创 2017-03-26 21:44:30 · 1304 阅读 · 0 评论 -
tensorflow学习序列——多层感知机实现MNIST数字识别
利用tensorflow实现多层感知机,如下: 1. 主程序: # 实现多层感知机import input_dataimport tensorflow as tfmnist = input_data.read_data_sets("MNIST_data/", one_hot = True);in_units = 784;h1_units = 300;W1 = tf.Varia...原创 2018-04-11 21:08:13 · 590 阅读 · 0 评论 -
tensorflow学习序列——AlexNet实现
# AlexNet #from datetime import datetimeimport mathimport timeimport tensorflow as tfdef print_activations(t): print(t.op.name, ' ', t.get_shape().as_list());def inference(images):...原创 2018-04-11 21:13:37 · 277 阅读 · 0 评论 -
tensorflow学习序列——自动编码AutoEncode
# Tensor Flow实现自编码器import numpy as npimport sklearn.preprocessing as prepimport tensorflow as tfimport input_datadef standard_scale(X_train, X_test): preprocessor = prep.StandardScaler().fit...原创 2018-04-11 21:15:26 · 695 阅读 · 0 评论 -
tensorflow学习序列——VGGNet-16实现
# VGG Net #import tensorflow as tffrom datetime import datetimeimport mathimport timedef conv_op(input_op, name, kh, kw, n_out, dh, dw,p): n_in = input_op.get_shape()[-1].value; with ...原创 2018-04-11 21:22:10 · 439 阅读 · 0 评论 -
Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models(Kd-Networks模型)
原创 2018-04-24 22:04:48 · 1364 阅读 · 0 评论 -
Multi-View 3D Object Detection Network for Autonomous Driving(MV3D模型)
原创 2018-04-24 22:15:02 · 2221 阅读 · 9 评论 -
Vehicle Detection from 3D Lidar Using Fully Convolutional Network解析(3D-CNN模型)
1. 概述该论文的主要工作是,在只利用激光雷达的点云数据作为输入,在点云数据中进行类型为”车辆”的目标进行检测(在复现该算法过程中,存在一个比较显然的现象就是:目标所在的的位置,实际上垂直角一般都很小,在进行映射映射前后容易产生误差,这种误差对于远的目标的定位会有非常明显的影响;或者是是我理解有问题吗? -2018-04-25)。2. 方法2.1 数据预处理将激光雷达扫描获取的3维点进行映射,其中...原创 2018-04-20 20:21:51 · 4844 阅读 · 3 评论 -
LLNet模型实现——模型训练(完结)
# Ref: LLNet: Deep Autoencoders for Low-light Image Enhancement## Author: HSW# Date: 2018-05-11 #from prepare_data import * from LLNet import * # 训练样本/测试样本的个数TRAIN_NUM_SAMPLES = 14584...原创 2018-05-24 10:23:29 · 3527 阅读 · 17 评论