算法实现
文章平均质量分 82
Hit_HSW
软件工程师
展开
-
LLNet模型实现——模型训练(完结)
# Ref: LLNet: Deep Autoencoders for Low-light Image Enhancement## Author: HSW# Date: 2018-05-11 #from prepare_data import * from LLNet import * # 训练样本/测试样本的个数TRAIN_NUM_SAMPLES = 14584...原创 2018-05-24 10:23:29 · 3527 阅读 · 17 评论 -
图像增强序列——A Variational Framework for Retinex
1. 参考文献2. 模型实现(这个实现效果不好,仅仅作为参考,欢迎大家能够批评指正, 因为效果不好,就不呈现模型效果了,可能理解不是特别到位,如果以后有新的理解,将会进行代码更新,如果您有相关的代码也请不吝分享)% 论文: A_Variational_Framework_for_Retinex% 作者:% 链接:% Author: HSW % Date; 2018-05-01...原创 2018-05-01 19:28:27 · 1663 阅读 · 9 评论 -
图像增强序列——Naturalness Preserved Enhancement Algorithm for Non-Uniform Illumination Image
1. 参考文献2. 模型实现% 论文: Naturalness Preserved Enhancement Algorithm for Non-Uniform Illumination Images% 作者: Shuhang Wang, Hai-Miao Hu, Bo Li% 链接:% Author: HSW% Date: 2018-04-29%clc;close all;cle...原创 2018-04-30 11:54:24 · 4916 阅读 · 16 评论 -
水平集图像分割序列——Order LBF模型
1. 参考文献2. 模型实现2.1 Order-LBF模型Demo%demo_Order_LBF.m%Author: HSW%Date;2015/4/12%HARBIN INSTITUTE OF TECHNOLOGY% Set Matlabclose all;clear all;clc;% demo 编号,需要修改ii = 1;% Add pathaddpath(genpat...原创 2018-03-27 23:42:23 · 1620 阅读 · 2 评论 -
水平集图像分割序列——多尺度LBF模型
1. 背景如下图所示,为LBF模型当水平集初始化位置不同时,分割效果不同; 分析其原因是,LBF模型是一个考虑局部区域的模型,当水平集演化到一个比较平坦的位置时,水平集演化速度将会迅速下降;为了克服该问题,提出多尺度的LBF模型。 2. 模型简介3. 模型代码%demo_multi_LBF.m%Author: HSW%Date;2015/4/12%HARBIN INSTITUTE OF TE...原创 2018-03-27 23:30:32 · 4450 阅读 · 13 评论 -
水平集图像分割序列——LGIF模型
1. 参考文献实际上是一个组合模型,即LBF + CV模型2. LGIF模型实现2.1 LGIF模型Demo %demo_LGIF.m%Author: HSW%Date;2015/4/12%PRIS OF HARBIN INSTITUTE OF TECHNOLOGY% Set Matlabclose all;clear all;clc;% demo 编号,需要修改ii = 1;...原创 2018-03-27 23:19:44 · 2835 阅读 · 19 评论 -
水平集图像分割序列——多相CV模型改进
1. 背景在多相CV模型中(https://blog.csdn.net/hit1524468/article/details/79706174), 我们注意到随着迭代次数的增加,水平集函数波动的范围开始逐渐增大,这就是水平集的符号函数重新初始化问题;Li Cunming 提出了对水平集函数进行卷积的方法,避免了水平集的重新初始化问题(参考文献:Level Set Evolution Without...原创 2018-03-27 22:34:03 · 2165 阅读 · 1 评论 -
水平集图像分割序列——多相CV模型
1. 参考文献2. Multi-CV模型2.1 四相CV模型Demo % This code implements the Vese-Chan multiphase level set model in [1].% Note: There may be more sophiscated numerical schemes with better performance than the ...原创 2018-03-27 22:26:12 · 2913 阅读 · 0 评论 -
水平集图像分割序列——LCV模型
1. 参考文献2. LCV模型%demo_LCV.m%Author: HSW%Date;2015/4/12%HARBIN INSTITUTE OF TECHNOLOGY% Set Matlabclose all;clear all;clc;% demo 编号,需要修改ii = 1;% Add pathaddpath(genpath('Image\'));addpath(ge...原创 2018-03-26 23:05:20 · 2488 阅读 · 12 评论 -
水平集图像分割序列——LBF模型
1. 参考文献2. LBF模型%demo_LBF.m%Author: HSW%Date;2015/4/12%HARBIN INSTITUTE OF TECHNOLOGY% Set Matlabclose all;clear all;clc;% demo 编号,需要修改ii = 1;% Add pathaddpath(genpath('Image\'));addpath(ge...原创 2018-03-26 22:56:22 · 4669 阅读 · 13 评论 -
水平集图像分割序列——CV模型
1. 参考文献2. CV模型代码2.1 CV 模型代码%demo_CV.m%Author: HSW%Date;2015/4/12% HARBIN INSTITUTE OF TECHNOLOGY% Set Matlabclose all;clear all;clc;% demo 编号,需要修改ii = 1;% Add pathaddpath(genpath('Image\'))...原创 2018-03-26 22:46:48 · 8966 阅读 · 27 评论 -
判断点是否包含在任意姿态长方体内部
1. 背景 为了能够快速判断一个点是否在3维空间中的任意姿态的长方体中,虽然,对于平行坐标平面的长方体(例如平行于oxy平面)的判断方法非常简单,但是,想要判断一个点是否包含在3维空间中的任意姿态的长方体比较复杂。 2. 判断原理 如下图所示,我们其实只需要判断一个点是否在3组平行平面的同一侧即可以判断(前/后面,左/右面,上/下面),判断的方法比较简单:即利用如图所示中的与法线的夹角...原创 2018-04-08 21:05:58 · 6638 阅读 · 2 评论 -
图像除雾序列——暗通道模型
1. 参考文献2. 暗通道模型2.1 暗通道模型Democlcclose all; clear all; addpath(fullfile('Images\')); imageName = 'sweden.jpg';patch_size = 3; [I I_out J T_est T A] = removeHaze( imageName, patch_size );figure; ...原创 2018-03-31 15:55:30 · 865 阅读 · 0 评论 -
图像除雾序列——Fattal模型
1. 参考文献2.Fattal模型实现2.1 Fattal模型Demo clcclear all;input = imread('6.png');% input = imread('1.bmp');% input = imread('plane.jpg'); [h,w,s]=size(input);figure, imshow(input), title('Input image') ...原创 2018-03-31 15:44:22 · 1077 阅读 · 0 评论 -
图像增强序列——基于多尺度形态学亮top-hat变换和暗top-hat变换图像增强
1. 参考文献2. 算法实现% 参考文献: 多尺度top-hat 变换提取细节的对比度增强算法% 作者: 刘艳莉, 桂志国% http://www.docin.com/p-1457027092.html% Author: HSW% Date: 2018-04-25%clc;close all;clear all;% img = imread('lena.jpg');img ...原创 2018-04-25 18:37:55 · 5077 阅读 · 2 评论 -
深度学习——3D Fully Convolutional Network for Vehicle Detection in Point Cloud模型实现
1. 参考文献3D Fully Convolutional Network for Vehicle Detection in Point Cloud2. 模型实现'''Baidu Inc. Ref: 3D Fully Convolutional Network for Vehicle Detection in Point CloudAuthor: HSW Date: 2018-05-...原创 2018-05-03 21:44:47 · 2465 阅读 · 8 评论 -
LLNet模型实现-训练模型
# Ref: LLNet: Deep Autoencoders for Low-light Image Enhancement# # CVPR 2014# # Author: HSW# Date: 2018-05-11import tensorflow as tfimport numpy as np class LLNet_Model(object): def __i...原创 2018-05-24 10:21:27 · 1389 阅读 · 0 评论 -
深度学习序列——稀疏自编码器模型(SAP)
1. 模型简介(1) 模型要能够学习恒等变换(2) 隐藏层的神经元的活动性满足稀疏性(模型大脑) (3) 隐藏层的权重矩阵同样满足稀疏性(一种正则化方法,实际上,在稀疏编码取得好的效果有启发作用)2. 模型实现# Sparse Auto-Encoder ## Author: HSW# Date: 2018-05-07#import tensorflow as tfimport num...原创 2018-05-07 23:17:06 · 1025 阅读 · 2 评论 -
深度学习序列——噪声自编码器(WAE)
1. 模型简介为了提高自编码器的泛化性能和鲁棒性,在输入的数据中,我们加入高斯白噪声,通过深度网络进行学习,以获取“无噪声”情况下的输出数据——有一点向去除噪声,实际上,最开始通过堆叠的自动编码器实现噪声去除。 2. 模型实现(注意:模型和AE的区别就是,输入网络的数据是加噪声的数据,代价函数却采用的是无噪声数据进行计算)# whilt gaussian noise Auto-Encoder #...原创 2018-05-07 22:45:15 · 3843 阅读 · 0 评论 -
深度学习序列——自编码器(AE)模型
1. 模型简介自编码器是无监督学习的重要的学习方法,因为,该模型实现神经网络学习恒等映射函数h,即 x = h(x)2. 模型实现# Auto-Encoder ## Author: HSW# Date: 2018-05-06#import tensorflow as tfimport numpy as npdef axvier_init(fan_in, fan_out,...原创 2018-05-07 22:18:31 · 4360 阅读 · 0 评论 -
图像增强序列——LIME: A Method for Low-light IMage Enhancement(LIME模型,2017CVPR)
1. 参考文献2. 模型实现 % 论文: LIME: A Method for Low-light Image Enhancement% 作者:Xiaojie Guo% 链接:% Author: HSW% Date: 2018-04-27clc;close all;clear;addpath(genpath('removeHaze\')); addpath(genpath('...原创 2018-04-29 09:08:33 · 12253 阅读 · 24 评论 -
RANSAC 直线拟合算法
1. 参考文献RANSAC 直线拟合算法2. 算法实现#include <iostream>#include <random>#include <vector>#include <memory.h>#include <set>// Date: 2018-01-09// Author: HSW////...原创 2018-05-19 16:32:02 · 5960 阅读 · 3 评论 -
Ramer-Douglas-Peucker Algorithm
1. 参考文献https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm2. 算法实现#include <iostream>#include <math.h>#include <vector>// 参考资料:// https://en.wikipedia.o...原创 2018-05-19 15:25:57 · 2747 阅读 · 0 评论 -
图像去噪序列——BM3D图像去噪模型实现
1. BM3D模型简介BM3D模型是一个两阶段图像去噪方法,主要包含两个步骤: (1) 在噪声图像上,利用局部区域搜索相似块,并进行堆叠,在变换域(DCT域、FFT域)利用硬阈值去噪方法对堆叠的图像块进行去噪,获得堆叠相似块的估计值,最后,根据均值权重进行聚合; (2) 通过步骤(1) 获取初步估计的图像,在初步估计的图像上进行相似块的聚合; 然后,利用维纳协同滤波进行图像去噪,从而,获取最后的去...原创 2018-05-06 19:01:45 · 6776 阅读 · 5 评论 -
图像增强序列——Adaptive Local Power-Law Transformation for Color Image Enhancement(自适应伽马变换)
1. 参考文献2. 模型实现% 论文: Adaptive Local Power-Law Transformation for Color Image Enhancement% 作者: Chun-Ming Tsai%% Author: HSW% Date: 2018-04-27clc;close all;clear;img = imread('timg2.jpg');fig...原创 2018-04-27 20:06:35 · 2913 阅读 · 3 评论 -
LLNet模型实现——训练数据准备之抽取训练样本
1. 背景LLNet模型通过训练高斯噪声自动编码器,实现图像增强和图像噪声去除2. 代码实现% LLNet: Deep Autoencoders for Low-light Image Enhancement% 生成LLNet所需要的训练样本% Author: HSW% Date: 2018-05-05%% patchsize: 17 x 17 = (2 * ksize + 1) x ...原创 2018-05-05 19:46:06 · 1374 阅读 · 3 评论 -
LLNet模型实现——LLNet模型数据读取
1. 简介实现LLNet模型的数据读取接口2. 代码实现# Ref: LLNet: Deep Autoencoders for Low-light Image Enhancement## Author: HSW# Date: 2018-05-11 #import tensorflow as tfimport numpy as npfrom PIL import Image i...原创 2018-05-12 09:29:51 · 2173 阅读 · 1 评论 -
图像增强序列——基于Lab色彩空间和色调映射的彩色图像增强算法
1. 参考文献2. 模型实现% 论文: 基于Lab色彩空间和色调映射的彩色图像增强算法% 作者:% 链接: http://www.jsjkx.com/jsjkxen/ch/reader/create_pdf.aspx?file_no=20180251&year_id=2018&quarter_id=2&falg=1% Author: HSW% Date: 2018-...原创 2018-04-26 23:07:36 · 1565 阅读 · 8 评论 -
图像除雾序列——NBPC+PA模型
1. 参考文献2. NBPC+PA模型2.1 NBPC+PA模型Demo % Gray level example of visibility restorationim=double(imread('PISTEB00738S.pgm'))/255.0;sv=2*floor(max(size(im))/25)+1;res2=nbpcpa(im,sv,0.95,-1,1,1.0,70,200)...原创 2018-03-31 15:26:24 · 834 阅读 · 0 评论 -
图像除雾序列——NBPC模型
1. 参考文献2. Teral代码2.1 NBPC模型Demo% Gray level example of visibility restorationim=double(imread('PISTEB00738S.pgm'))/255.0;sv=2*floor(max(size(im))/25)+1;res=nbpc(im,sv,0.95,-1,1,1.0);figure;imshow(...原创 2018-03-31 15:19:06 · 731 阅读 · 2 评论 -
图像除雾序列——非参数图像增强3
3 USM锐化(imsharpen, demo3.m)USM锐化实际上是对边缘进行增强,一般原理如下: (12)其中J为增强后的图像,I为输入图像,为增益因子,L为低通滤波器。 图7-(a) USM锐化:增强边缘 图7-(b) USM锐化:对于灰度分布没有影响代码如下: %demo3.m %Author: HSW%Date:2015/7/18%H...原创 2018-03-22 22:18:01 · 336 阅读 · 0 评论 -
图像除雾序列——非参数图像增强2
2 对比度限制自适应直方图均衡化(adapthisteq, demo2.m)对于全局直方图均衡化图像增强存在的问题,提出了很多改进方法:局部直方图均衡化、限制对比度直方图均衡化等,对比度限制自适应直方图均衡化方法(CLAHE)是结合了局部性和直方图高度限制的图像增强方法,CLAHE可以有效抑制局部对比度增强及噪声放大。增强效果如图6所示。 图6-(a) 较好地抑制了噪声 图6-(b) 和直方图均...原创 2018-03-22 22:15:21 · 355 阅读 · 0 评论 -
图像除雾序列——非参数图像增强1
1 直方图均衡化(histeq, demo1.m)直方图均衡化是一种无参数的全局图像增强方法,其原理是对原图像的像素值进行非线性变换,使变换后的图像的像素值满足一定的概率分布(均匀分布、瑞利分布和),但是,对于某些图像全局直方图均衡化容易导致“过度曝光”或者“曝光不足”等现象。图像增强效果如图5所示。 图5-(a) “过度曝光”现象 图5-(b) 图5-(c) 图5-(d)代码如下: %demo...原创 2018-03-22 22:13:32 · 390 阅读 · 0 评论 -
图像除雾序列——雾的光学模型
参考文献:[1] Yadav G, Maheshwari S, Agarwal A. Fog removal techniques from images: A comparative review and future directions[C]// Signal Propagation and Computer Technology (ICSPCT), 2014 International C...原创 2018-03-22 22:10:30 · 1841 阅读 · 0 评论 -
显著性检测——PFT模型
1. 参考文献Guo C, Ma Q, Zhang L. Spatio-temporal Saliency detection using phase spectrum of quaternion fourier transform[J]. 2008:1-8.2. 模型实现2.1 显著性检测公共头文件#ifndef SALIENTCOMMON_H#define SALIENTCOMMON_H/...原创 2018-03-22 21:08:00 · 1624 阅读 · 0 评论 -
显著性检测——SR模型
1. 参考文献X. Hou and L. Zhang, “Saliency detection: A spectral residual approach,” in IEEE CVPR, 2007, pp. 1–8.2.模型实现2.1 显著性检测公共头文件#ifndef SALIENTCOMMON_H#define SALIENTCOMMON_H// std lib#include <...原创 2018-03-22 21:04:02 · 5424 阅读 · 0 评论 -
显著性检测——FT模型
1. 参考文献R. Achanta, S. Hemami, F. Estrada and S. Süsstrunk, Frequency-tuned Salient Region Detection, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 1597 - 16...原创 2018-03-22 21:01:01 · 2930 阅读 · 0 评论 -
显著性检测——ITTI模型
1. 参考文献// Itti L, Koch C, Niebur E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1998, 20(11):1254-1259.// ...原创 2018-03-22 20:57:34 · 9181 阅读 · 13 评论 -
显著性检测——LC模型
1. 参考文献: Visual Attention Detection in Video Sequences Using Spatiotemporal Cues。 Yun Zhai and Mubarak Shah. Page 4-52. 模型实现2.1 显著性检测公共头文件#ifndef SALIENTCOMMON_H#define SALIENTCOMMON_H// std lib#i...原创 2018-03-22 20:51:38 · 3885 阅读 · 0 评论 -
图像修复序列-Lowrank模型
低阶秩序图像修复模型低阶秩图像修复模型,假设图像的数据维度秩(rank)较低,那么,可以利用该性质实现图像修复,具体模型如下:通过将迹范数转化为核范数,将非凸优化问题转化为凸优化问题,如下:通过迭代求解上述凸优化问题可以实现图像修复:% demo2.m % Date: 2015/6/12% Author: HSW% HARBIN INSTITUTE OF TECHNOLOGY % set...原创 2016-12-03 16:29:08 · 2262 阅读 · 3 评论