文章目录
运算放大器(简称“运放”)是一种具有很高放大倍数的电路单元,广泛应用于音视频放大、模拟运算、信号处理等方面,基本上以单芯片(集成电路)的形式存在。在电子技术课程中,将从器件性能和应用的角度,分析实际运放的差模放大倍数、差模输入电阻、输出电阻、共模抑制比、输入失调电压、温度漂移和压摆率等各种参数和指标,以及各种线性和非线性实际应用电路。而在《电路》课程阶段,主要是建立运放的线性电路模型,构建基础应用电路(电阻电路),形成基本分析方法。
1.运放的构成
集成运放实物图如图1所示,内部结构如图2所示,含多级放大电路,其输入级是差分放大电路,具有高输入电阻;中间级主要进行电压放大,具有高电压放大倍数;输出极与负载相连,具有带载能力强、低输出电阻的特点。
图2中, V C C + \mathrm{V}_{\mathrm{CC}}+ VCC+和 V C C − \mathrm{V}_{\mathrm{CC}}- VCC−是外接电源电压,为内部的晶体管提供工作电源;OUT为输出端,IN-端为反相(也称倒向)输入端,IN+端为同相输入端,IN+和IN-的输入电压差称为差分输入电压。输入端和输出端的电压变化特点是我们分析运放特性和建立电路模型的主要依据。
2.运放的外特性
运算放大器的外特性可以通过其输入输出特性曲线来体现,如图3所示, u d u_d ud为输入差分电压, u o u_o uo为输出电压, U s a t U_{sat} Usat为输出饱和电压, ε \varepsilon ε表示一个很小的数。
可以看出,运放的线性放大部分很窄,在输入(差分)电压很小时,运放就已经进入饱和工作状态,此时输出电压保持不变。
3.运放的电路模型和符号
⑴线性模型
运算放大器的电路模型如图4所示,是以运放外特性的线性部分为依据所建立,其中,a、b端子分别为反相输入端和同相输入端, R i R_i Ri为输入电阻, R o R_o Ro为输出电阻, A A A为运放的电压放大倍数, u d = u + − u − u_d=u^+-u^- ud=u+−u−为差分输入电压。
⑵运放的符号
常用的运放电路的符号有两大类,图5(a)和(b)分别为运放及理想运放的国标符号,图6为通用符号。电路课程及相关教学期刊国标符号普及率较高,电子技术课程则使用通用符号更多。
在上述电路符号中,省去了电源端和接地端,在应用电路作图时,有时会标出接地端,但不标的情况可能更多,分析电路时,默认电源端和接地端均按标准连接。做电路仿真时,应正常接入(不能省)。
4.理想运放的“虚短”和“虚断”
⑴“虚短”和“虚断”的概念
①“虚短”:理想运放中,由于 u o u_o uo是有限值, A → ∞ A\rightarrow\infty A→∞,由 u o = A u d = A ( u + − u − ) u_o=Au_d=A(u^+-u^-) uo=Aud=A(u+−u−)知,需两个输入端对地电压相等,即 u + = u − u^+=u^- u+=u−,称之为“虚短”。
②“虚断”:由于理想运放的输入电阻 R i → ∞ R_i\rightarrow\infty Ri→∞,流入两个输入端的电流均为零,即 i + = i − = 0 i^+=i^-=0 i+=i−=0,称之为“虚断”。
⑵注意事项
“虚断”和“虚短”可作为理想运放的性质,结合结点电压法或直接列KCL方程进行电路的分析和求解。需要注意的是,由于运放输出端的电流不确定,一般不对输出端结点列写KCL方程。
分析含非理想运放电路时,应考虑具体情况列写相应的方程,若可近似为理想运放,则可使用“虚断”和 “虚短”的方法分析;若不能近似为理想运放,可通过运放的线性模型进行电路的分析和求解。
5.基本应用电路
⑴比例运算电路
①反相放大器:电路如图7所示,对理想运放, 由“虚短”知, u − = u + = 0 u^-=u^+=0 u−=u+=0,所以 i 1 = u i R 1 i_1=\cfrac{u_i}{R_1} i1=R1ui,又由“虚断”知, i 2 = i 1 i_2=i_1 i2=i1,故 u o = − i 2 R 2 = − R 2 R 1 u i u_o=-i_2R_2=-\cfrac{R_2}{R_1}u_i uo=−i2R2=−R1R2ui。
【补充】假设该反相比例运算电路采用放大倍数为 A A A的非理想运放,利用线性模型(如图8所示)分析如下:
图中结点1电压为
u
−
u^-
u−,结点2电压为
u
o
u_o
uo,列结点电压方程,得
{
(
G
1
+
G
2
+
G
i
)
u
−
−
G
2
u
o
=
G
1
u
i
−
G
2
u
−
+
(
G
2
+
G
o
)
u
o
=
−
G
o
A
u
−
\left\{ \begin{array}{c} \left( G_1+G_2+G_i \right) u^--G_2u_o=G_1u_i\\ -G_2u^-+\left( G_2+G_o \right) u_o=-G_oAu^-\\ \end{array} \right.
{(G1+G2+Gi)u−−G2uo=G1ui−G2u−+(G2+Go)uo=−GoAu−
整理得
{
(
G
1
+
G
2
+
G
i
)
u
−
−
G
2
u
o
=
G
1
u
i
(
G
o
A
−
G
2
)
u
−
+
(
G
2
+
G
o
)
u
o
=
0
\left\{ \begin{array}{c} \left( G_1+G_2+G_i \right) u^--G_2u_o=G_1u_i\\ (G_oA-G_2)u^-+\left( G_2+G_o \right) u_o=0\\ \end{array} \right.
{(G1+G2+Gi)u−−G2uo=G1ui(GoA−G2)u−+(G2+Go)uo=0
解得
u
o
=
−
G
1
G
2
∙
G
2
(
G
o
A
−
G
2
)
G
2
(
G
o
A
−
G
2
)
+
(
G
1
+
G
2
+
G
i
)
(
G
2
+
G
o
)
=
−
G
1
G
2
∙
1
1
+
(
G
1
+
G
2
+
G
i
)
(
G
2
+
G
o
)
G
2
(
G
o
A
−
G
2
)
u_o=-\frac{G_1}{G_2}\bullet \frac{G_2\left( G_oA-G_2 \right)}{G_2\left( G_oA-G_2 \right) +\left( G_1+G_2+G_i \right) \left( G_2+G_o \right)}=-\frac{G_1}{G_2}\bullet \frac{1}{1+\frac{\left( G_1+G_2+G_i \right) \left( G_2+G_o \right)}{G_2\left( G_oA-G_2 \right)}}
uo=−G2G1∙G2(GoA−G2)+(G1+G2+Gi)(G2+Go)G2(GoA−G2)=−G2G1∙1+G2(GoA−G2)(G1+G2+Gi)(G2+Go)1
由上式可知,如果运放的输入电阻
R
i
R_i
Ri很大、放大倍数
A
A
A很大(实际运放可达
1
0
5
10^5
105数量级),则
(
G
1
+
G
2
+
G
i
)
(
G
2
+
G
o
)
G
2
(
G
o
A
−
G
2
)
≈
0
\frac{\left( G_1+G_2+G_i \right) \left( G_2+G_o \right)}{G_2\left( G_oA-G_2 \right)}\approx 0
G2(GoA−G2)(G1+G2+Gi)(G2+Go)≈0,故
u
o
≈
−
G
1
G
2
=
−
R
2
R
1
u_o\approx -\frac{G_1}{G_2}=-\frac{R_2}{R_1}
uo≈−G2G1=−R1R2
②同相放大器:电路如图9所示,利用“虚断”和“虚短”性质,易得
u
o
=
(
1
+
R
2
R
1
)
u
i
u_o=\left( 1+\frac{R_2}{R_1} \right) u_i
uo=(1+R1R2)ui
⑵反相加法器
电路如图10所示,
i
Σ
=
u
1
R
1
+
u
2
R
2
+
u
3
R
3
i_{\Sigma}=\cfrac{u_1}{R_1}+\cfrac{u_2}{R_2}+\cfrac{u_3}{R_3}
iΣ=R1u1+R2u2+R3u3,参照反相放大器,得
u
o
=
−
R
f
(
u
1
R
1
+
u
2
R
2
+
u
3
R
3
)
u_o=-R_f\left( \frac{u_1}{R_1}+\frac{u_2}{R_2}+\frac{u_3}{R_3} \right)
uo=−Rf(R1u1+R2u2+R3u3)
⑶电压跟随器
电路如图11所示,由“虚短”性质, u o = u i u_o=u_i uo=ui。
基础题★★
题1 电路如图12,求 u 1 u_1 u1、 u o u_o uo。
解析:按电路所标注结点,根据“虚短”、“虚断”性质,
u
n
2
=
u
s
u_{n2}=u_s
un2=us,
i
1
=
0
i_1=0
i1=0,
u
n
3
=
0
u_{n3}=0
un3=0。列结点②和结点③的KCL方程
{
u
1
−
u
s
R
=
u
s
R
u
s
−
u
n
3
R
+
u
1
−
u
n
3
R
=
u
n
3
−
u
o
R
\left\{\begin{aligned} &\frac{u_1-u_s}{R}=\frac{u_s}{R}\\ &\frac{u_s-u_{n3}}{R}+\frac{u_1-u_{n3}}{R}=\frac{u_{n3}-u_o}{R}\\ \end{aligned} \right.
⎩
⎨
⎧Ru1−us=RusRus−un3+Ru1−un3=Run3−uo
解得
u
1
=
2
u
s
,
u
o
=
−
3
u
s
u_1=2u_s\text{,}u_o=-3u_s
u1=2us,uo=−3us
题2 电路及参数如图13所示,A为理想运放,
R
=
10
k
Ω
R=10\mathrm{k}\Omega
R=10kΩ,求
u
o
u
i
\cfrac{u_o}{u_i}
uiuo。
解析:由理想运放的“虚短”、“虚断”,列KCL及附加方程
{
u
n
1
=
u
i
0
−
u
n
1
R
=
u
n
1
−
u
n
2
R
u
n
2
−
u
n
3
R
=
u
n
3
−
0
R
u
n
3
=
u
n
4
u
o
−
u
n
4
R
=
u
n
4
−
0
R
\left\{ \begin{aligned} &u_{n1}=u_i\\ &\textcolor{blue}{\frac{0-u_{n1}}{R}=\frac{u_{n1}-u_{n2}}{R}}\\ &\frac{u_{n2}-u_{n3}}{R}=\frac{u_{n3}-0}{R}\\ &\textcolor{blue}{u_{n3}=u_{n4}}\\ &\frac{u_o-u_{n4}}{R}=\frac{u_{n4}-0}{R}\\ \end{aligned} \right.
⎩
⎨
⎧un1=uiR0−un1=Run1−un2Run2−un3=Run3−0un3=un4Ruo−un4=Run4−0
解得
u
o
=
2
u
i
,
∴
u
o
u
i
=
2
u_o=2u_i\text{,}\therefore \frac{u_o}{u_i}=2
uo=2ui,∴uiuo=2