Transformer、VIT、Swin-TR、DETR和SETR网络结构和改进思路

Transformer 

是一种基于自注意力机制的架构。使用多头注意力机制来捕捉输入序列中的依赖关系,并且通过堆叠多个编码器和解码器层来实现更复杂的表示学习。改进:①模型规模调整:增加模型的宽度和深度、增加注意力头的数量、增加编码器和解码器的层数或隐藏层的维度。②正则化和正则项:对模型正则化和添加正则项可以防止过拟合。③注意力机制改进:使用更加复杂的注意力函数或引入自适应注意力权重、稀疏注意力或多尺度注意力方式。④更好的位置编码:可尝试设计更好的位置编码方式以提高对序列位置信息的建模能力。⑤参数初始化策略:采用先进的参数初始化方法来提供良好的初始权重。⑥更大的训练数据集:可通过数据增强技术扩充现有的数据集或迁移学习等方法。⑦优化算法的改进:可尝试使用自适应优化器以及动态调整学习率策略。

VIT        

是一种将Transformer应用于计算机视觉任务的方法。它将图像分为一组固定大小的图块,然后将他们扁平化为序列作为Transformer的输入,从而实现了在图像领域的成功应用。改进:①对于较大的图像,分块方式会丢失大范围的上下文信息,需要引入更好的图块划分策略。②对于存在目标遮挡或变形的图像,VIT无法有效地处理局部信息,因此需引入更好的局部感知机制。

Swin-TR    

是一种改进的Transformer架构,它提出了基于窗口的注意力机制来处理图像。与VIT不同,Swin-TR将图像划分为若干层次的窗口,并在窗口级别上应用自注意力机制。这种划分方式克服了VIT中图块划分的问题,能够更好地捕捉图像的全局和局部信息。改进:可在窗口划分策略上进行探索,进一步提高模型的性能和效率。

DETR      

是一种基于Transformer的目标检测算法。它将目标检测问题转化为一个序列到序列的转换任务,并使用Transformer进行端到端的处理。其可直接输出目标的类别和位置信息,避免了传统目标检测方法中的先验框和非极大值抑制等操作。改进:对序列的转换方式进行了改进,以提高模型检测精度和速度。

SETR       

是一种基于Transformer的语义分割方法。其使用一个特殊的编码器结构,对输入图像进行像素级别的预测。SETR的优势在于可以同时对整个图像进行注意力计算,避免了传统分割方法中的像素级别处理。改进:对编码器——解码器结构优化,进一步提高模型的语义分割性能。

  • 9
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值