CLIP模型学习笔记——Zero-Shot推理

论文:Learning Transferable Visual Models From Natural Language Supervision

代码:https://github.com/OpenAI/CLIP

CLIP(Constrastive Language-Image Pre-training)

        利用自然语言处理的监督信号训练一个迁移性能好的视觉模型,是一个涉及文本、图片的多模态工作。通过学习一个泛化性能好的模型,从而在各种任务和数据集上不需要训练,直接推理(Zero-Shot)就能获得一个不错的结果。

zero-shot learning(零样本学习):指的是模型在没有针对特定下游任务进行微调的情况下,能够直接应用于该任务并做出合理的预测。这种方法通常依赖于模型在预训练阶段学习到的通用知识和特征。

预训练模型:在零样本学习中,模型通常是一个已经在大规模数据集上进行预训练的模型,例如 BERT、GPT、T5 等。这些模型通过学习大量的语言数据,掌握了丰富的语言特征和知识。

下游任务:在实际应用中,某些下游任务可能没有直接的训练数据(例如,特定分类任务或问答任务)。零样本学习的目标是让模型能够使用自己在预训练阶段获得的知识,在没有针对该任务的额外训练数据的情况下,进行有效的推理和预测。

应用场景:在零样本学习中,模型可以通过自然语言描述(例如,任务提示、类别描述或问题描述)来理解和执行新的任务。例如,给定一个文本分类任务,模型可以根据类别的描述(如“体育”、“科技”等)来进行分类,而不需要专门的训练样本。

输入:配对的图像和文本

数据集:4亿高质量的图像文本配对(WIT)。

        与分类模型不同,CLIP不需要预先定义的类别标签,而是从文本中获取监督信号,通过一个预训练的对比学习模型,提取到多模态的特征,从而得到任意一种类别的结果(泛化性高)。

        通过将视觉特征和语义特征联系起来,可以学习到语义特征很强的信息。CLIP已经成功应用于图像生成、检测分割、视频检索等任务中。

1、预训练阶段

        提取图像和文本的特征,企图获得图像对应的文本描述,但主观性强,训练困难;

        为了放宽约束信号,通过对比学习判断图像和文本的特征是否相似(配对),极大地提升了训练效率。

        其中文本编码器使用C

### CLIP模型在零样本学习中的应用 CLIP(Contrastive Language–Image Pre-training)是一种由OpenAI开发的多模态模型,它通过联合训练大量图像和对应的文本数据来实现跨模态的理解能力。这种预训练方法使得CLIP能够在未见过的任务上表现出强大的泛化性能,尤其是在零样本学习场景下。 #### 零样本学习的概念 零样本学习是指模型无需针对特定任务进行额外的微调或训练即可完成新任务的能力。对于CLIP而言,其核心优势在于能够利用自然语言作为桥梁,在测试阶段直接处理从未见过的数据分布[^1]。 #### 应用实例 以下是几个典型的CLIP模型应用于零样本学习的例子: 1. **分类任务** 假设有一个新的图像分类任务,其中类别标签并未用于训练过程。可以通过提供描述这些类别的简单文本提示(prompts),让CLIP计算输入图片与各类别之间的相似度得分并据此预测最可能的结果。例如,“a photo of a dog”可以用来表示狗这一类别。 2. **检索任务** 在视觉搜索领域,用户可以用自然语言查询指定想要查找的内容类型。“Find images that depict sunny beaches with palm trees.”这样的请求可以直接转化为向量空间内的匹配操作,从而快速定位符合条件的多媒体资源。 3. **生成对抗网络指导** 结合扩散模型或其他生成技术时,CLIP还可以充当评估器角色,帮助调整生成过程中产生的样例使其更贴近目标语义特征。这种方法已被证明能显著提升合成质量以及多样性[^2]。 4. **行为理解分析** 对于视频监控或者动作识别等领域来说,借助预先定义好的一系列事件模板(如“person crossing road at zebra crossing”),即使是在缺乏标注的情况下也有可能达到较高精度的行为解析效果。 #### 技术细节说明 为了支持上述功能特性,CLIP采用了对比损失函数设计思路,并引入了大规模互联网抓取素材库来进行端到端优化。具体来讲,就是同时编码来自不同感官通道的信息片段至统一维度下的嵌入表征形式;之后再依据余弦距离衡量两者间关联程度大小关系[^3]。 ```python import clip import torch device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) image_input = preprocess(image).unsqueeze(0).to(device) text_inputs = torch.cat([clip.tokenize(f"a photo of {c}") for c in classes]).to(device) with torch.no_grad(): image_features = model.encode_image(image_input) text_features = model.encode_text(text_inputs) similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1) values, indices = similarity[0].topk(5) ``` 以上代码展示了如何加载预训练版本的CLIP模型并对单张照片执行基于关键词列表的选择判断逻辑流程演示。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值