一、滑动窗口的最大值
题目描述
给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。
思路1:蛮力法,扫描每个滑动窗口所有数字并找出其中的最大值。如果滑动窗口的大小为k,则需要O(k)的时间复杂度找出最大值;对于长度为n的数组,总时间复杂度为O(nk).
class Solution {
public:
vector<int> maxInWindows(const vector<int>& num, unsigned int size)
{
vector<int> res;
if (num.size() == 0 || size == 0) return res;
for (int i = 0; i < num.size()-size+1; i++) { //注意num.size()-size+1
int j = i;
int count = 0;
vector<int> arr;
while (count!=size)
{
arr.push_back(num[j++]);
count++;
}
//sort(arr.begin(), arr.end()); //排序,时间复杂度为O(klogk)
//res.push_back(arr.back());
int max = 0;
for (auto i : arr) if (max < i) max = i; //该方法时间复杂度为O(k)
res.push_back(max); //取出滑窗中的最大值
}
return res;
}
};
思路2:只把有可能成为滑动窗口最大值的数值的下标存入一个双端队列,队首存放当前滑窗最大值的下标。如果队首和队尾的下标之差大于等于滑窗大小时,就将队首删除。
class Solution {
public:
vector<int> maxInWindows(const vector<int>& num, unsigned int size)
{
vector<int> res;
if (num.size() == 0 || size == 0 || size > num.size()) return res;
deque<int> dq;
for (int i = 0; i < size; i++) { //先构造窗口大小
if (!dq.empty() && num[i] >= num[dq.back()]) { //若当前值大于等于队尾,则删除队尾,否则就将当前值存入队尾
dq.pop_back();
}
dq.push_back(i);
}
res.push_back(num[dq.front()]); //存入第一个满足要求的最大值
for (int i = size; i < num.size(); i++) {
while (!dq.empty() && num[i] >= num[dq.back()]) { //若当前值大于等于队尾,则删除队尾,否则就将当前值存入队尾
dq.pop_back();
}
dq.push_back(i);
if (dq.back() - dq.front() >= size) //若队首元素与队尾元素相差大于等于滑窗大小,则删除队首
dq.pop_front();
res.push_back(num[dq.front()]);
}
return res;
}
};
也可以写成:
class Solution {
public:
vector<int> maxInWindows(const vector<int>& num, unsigned int size)
{
vector<int> res;
if (num.size() == 0 || size == 0) return res;
deque<int> dq;
for (int i = 0; i < num.size(); i++) {
while (!dq.empty() && num[i] >= num[dq.back()]) {
dq.pop_back();
}
dq.push_back(i);
if (dq.back() - dq.front() >= size)
dq.pop_front();
if(i+1>=size) //当滑动窗口首地址i大于等于size时才开始写入窗口最大值
res.push_back(num[dq.front()]);
}
return res;
}
};
二、队列的最大值
题目描述:
请定义一个队列并实现函数max得到队列里的最大值,要求函数max、push_back和pop_front的时间复杂度都是O(1)。
思路:使用两个队列,一个普通队列用于存放输入元素,一个双端队列用于存放当前队列最大值以及之后可能的最大值,保持从队首到队尾是递减的。队头存放最大值,队尾为之后可能的最大值
#include<iostream>
#include<string>
#include<queue>
using namespace std;
class Solution {
public:
void push_back(int num)
data.push(num);
while (!maxvalue.empty() && num > maxvalue.back())
maxvalue.pop_back();
maxvalue.push_back(num);
}
int pop_front() {
if (data.empty())
return -1;
int front = data.front();
data.pop();
if (!maxvalue.empty() && maxvalue.front() == front)
maxvalue.pop_front();
return front;
}
int max() {
if (maxvalue.empty()) return -1;
return maxvalue.front();
}
private:
queue<int> data;
deque<int> maxvalue;
};
void test() {
Solution s;
s.push_back(7); //data:7
cout << s.max() << endl; //输出7
s.push_back(6); //data:7,6
s.pop_front(); //删除7
s.pop_front(); //删除6
cout << s.max() << endl; //输出-1
s.push_back(4); //data:4
cout << s.max() << endl; //输出4
s.push_back(5); //data:4,5 5比4大,此时把队首4删除
s.pop_front();
cout << s.max() << endl; //输出5
s.push_back(3); //data:5,3
s.pop_front(); //删除5
cout << s.max() << endl; //输出3
s.push_back(2); //data:3,2
cout << s.max() << endl; //输出3
}
int main() {
test();
return 0;
}