DeepSeek-R1 重磅升级,智能体验再进化!

screenshot-20250210-093507.png

DeepSeek

AI 爱好者们注意啦!DeepSeek R1 模型完成小版本升级,新版本 DeepSeek-R1-0528 震撼登场。想体验超强思考与推理能力?官方网站、APP、小程序,一键开启 “深度思考” 功能,新版等你来探索!API 也同步更新,调用方式不变 ,轻松上手无压力。

深度思考能力强化

image.png

数据再提升

DeepSeek-R1-0528 就像一位学霸,在原来优秀的基础上更上一层楼 。它依旧以 2024 年 12 月发布的 DeepSeek V3 Base 模型作为 “知识根基”,但在后训练时投入了更多算力 ,就像给大脑配备了更强的 “运算引擎”,思维深度与推理能力大幅提升。

image.png

数据对比

在数学、编程与通用逻辑等多个基准测评中,它一路 “过关斩将”,取得国内模型最优成绩 ,把其他国内模型远远甩在身后 。而且在整体表现上,已经悄悄逼近 o3、Gemini-2.5-Pro 等国际顶尖模型 ,这可是在国际 AI 舞台上都能 “闪闪发光” 的存在,足以证明 DeepSeek-R1-0528 的实力 。

其他能力更新

image.png

数据对比

在改写润色时,旧版模型可能会加入一些原文没有的奇怪内容 ,让文章变得 “面目全非” ;但新版模型就靠谱多了,幻觉率降低了 45 - 50% 左右 ,能精准地按照你的要求对原文进行改写,保留关键信息,让文章更加通顺自然 。

对于喜欢写作的朋友来说,更新后的 R1 模型简直就是 “创作神器” 。在议论文创作上,它能帮你梳理出清晰的论点、论据和论证逻辑 ,以前旧版模型可能论述得比较简单、空洞 ,现在新版模型能洋洋洒洒地写出篇幅更长的文章 ,从多个角度深入分析问题 ,让你的议论文更有说服力 。

DeepSeek-R1-0528 还解锁了工具调用的新技能 ,虽然在 thinking 中还不支持 ,但这已经是很大的进步啦 。在 Tau-Bench 测评中 ,它在 airline 方面的成绩达到了 53.5% ,retail 方面达到了 63.9% ,和 OpenAI o1-high 水平相当 ,虽然和 o3-High 以及 Claude 4 Sonnet 还有些差距 ,但未来可期 。

API 更新

对于开发者来说,API 的更新至关重要 。DeepSeek-R1-0528 的 API 已同步更新,好消息是,接口与调用方式和以前一模一样 ,之前熟悉的操作方式都还在,上手毫无压力 。

新版 R1 API 还带来了新惊喜 ,它不仅仍支持查看模型思考过程 ,就像能 “窥探” 模型的思维世界 ,让你更了解它的推理逻辑 ;同时还增加了 Function Calling 和 JsonOutput 的支持 。有了 Function Calling,模型能更智能地调用外部工具和函数 ,实现更复杂的任务 ;JsonOutput 则让输出结果更加规范、清晰 ,方便后续的数据处理和分析 ,就像是给输出结果穿上了一件整齐的 “外衣” ,一目了然 。

这里要特别提醒 API 用户 ,新版 R1 API 中 max_tokens 参数的含义有了调整 。现在 max_tokens 用于限制模型单次输出的总长度 ,包括思考过程 ,默认为 32K ,最大为 64K 。这就好比给模型的 “输出字数” 设定了一个范围 ,大家一定要及时调整 max_tokens 参数 ,不然输出内容可能会被提前截断 ,就像故事讲到一半突然中断,多扫兴呀 ,所以千万别忘记调整 ,让模型尽情施展它的 “才华” 。

使用云端应用 开启超快AI之旅

image.png

慧星云

不少用户在本地使用 DeepSeek 时,常常会遇到卡顿、响应慢等问题,影响使用体验。而慧星云的云端服务完美解决了这些烦恼!通过云端运行,即使你的本地设备配置不高,也能享受丝滑流畅的 DeepSeek 使用体验。无论是进行复杂的推理任务,还是创意写作,都能快速响应,不再有等待的焦虑。感兴趣的小伙伴可以前往慧星云官网了解具体使用方法,开启高效、流畅的 AI 体验之旅!

DeepSeek R1 的这次更新,全方位提升了模型的实力,再加上慧星云云端服务的加持,使用体验直接拉满!无论是 AI 爱好者、开发者,还是普通用户,都值得亲自体验一番,相信它一定会给你带来意想不到的惊喜!赶紧行动起来,探索 DeepSeek 的无限可能吧!

 有关慧星云

慧星云是专业AI生产力平台,汇聚AI算力服务、AI生产力工具与魔多AI创作社区,赋能AI开发与创作全流程。

### 下载DeepSeek-R1-GGUF和DeepSeek-R1-Q2_K模型文件 为了从ModelScope平台下载所需的`DeepSeek-R1-GGUF`和`DeepSeek-R1-Q2_K`模型文件,并将其存储至指定的本地目录`e/model/deepseekr1/DeepSeek-R1-GGUF/DeepSeek-R1-Q2_K`,可以按照以下方法操作。 #### 安装依赖库 首先需要安装`modelscope`工具以便执行下载命令。可以通过pip完成安装: ```bash pip install modelscope ``` 此命令用于安装必要的Python包来支持后续的操作[^1]。 #### 执行下载命令 对于具体的模型文件下载,需分别运行两个独立的命令行指令以获取不同量化的版本。 针对`DeepSeek-R1-GGUF`模型文件,使用如下命令进行下载: ```bash modelscope download --model unsloth/DeepSeek-R1-GGUF DeepSeek-R1-GGUF.gguf --local_dir e/model/deepseekr1/DeepSeek-R1-GGUF/ ``` 而针对`DeepSeek-R1-Q2_K`模型文件,则应采用下列命令实现其下载过程: ```bash modelscope download --model unsloth/DeepSeek-R1-Q2_K DeepSeek-R1-Q2_K.gguf --local_dir e/model/deepseekr1/DeepSeek-R1-Q2_K/ ``` 上述两条命令中的参数解释如下: - `--model`: 指定要下载的具体模型名称及其所属仓库地址。 - 文件名部分定义了最终保存的目标文件命名方式。 - `--local_dir`: 设定了目标存储位置,即用户希望放置这些模型数据的实际磁盘路径。 注意,在实际操作前,请确认所使用的操作系统环境能够正常解析驱动器标识符(如这里的'e:'),以及具备足够的写权限访问该自定义目录结构下的子文件夹创建权利。 #### 验证下载成功与否 下载完成后建议进入设定好的本地储存路径检查是否存在对应扩展名为`.gguf`的新建文档实例作为验证手段之一;另外也可以借助官方API接口或者图形界面客户端进一步核实整个流程是否顺利完成预期任务设置。 ```python import os def verify_downloads(base_path='e:/model/deepseekr1'): expected_files = [ 'DeepSeek-R1-GGUF/DeepSeek-R1-GGUF.gguf', 'DeepSeek-R1-Q2_K/DeepSeek-R1-Q2_K.gguf' ] all_present = True for file_relpath in expected_files: full_filepath = os.path.join(base_path, file_relpath.replace('/', os.sep)) if not os.path.isfile(full_filepath): print(f'Missing file: {full_filepath}') all_present = False return all_present if verify_downloads(): print('All downloads verified successfully.') else: print('Some files are missing or incorrectly downloaded.') ``` 以上脚本可以帮助自动化检测是否有任何遗漏未被妥善处理的情况发生。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值