stable diffusion 参数说明

-h, --help:显示帮助信息并退出。
--exit:安装后立即终止。
--data-dir:指定存储所有用户数据的基本路径,默认为"./"。
--config:用于构建模型的配置文件路径,默认为 "configs/stable-diffusion/v1-inference.yaml"。
--ckpt:稳定扩散模型的检查点路径;如果指定,该检查点将被添加到检查点列表并加载。
--ckpt-dir:稳定扩散检查点的目录路径。
--no-download-sd-model:即使没有找到模型,也不下载SD1.5模型。
--vae-dir:变分自编码器模型的路径。
--gfpgan-dir:GFPGAN目录。
--gfpgan-model:GFPGAN模型文件名。
--codeformer-models-path:Codeformer模型文件的目录路径。
--gfpgan-models-path:GFPGAN模型文件的目录路径。
--esrgan-models-path:ESRGAN模型文件的目录路径。
--bsrgan-models-path:BSRGAN模型文件的目录路径。
--realesrgan-models-path:RealESRGAN模型文件的目录路径。
--scunet-models-path:ScuNET模型文件的目录路径。
--swinir-models-path:SwinIR和SwinIR v2模型文件的目录路径。
--ldsr-models-path:LDSR模型文件的目录路径。
--lora-dir:Lora网络的目录路径。
--clip-models-path:CLIP模型文件的目录路径。
--embeddings-dir:用于文本逆向的嵌入目录,默认为 "embeddings"。
--textual-inversion-templates-dir:文本逆向模板的目录。
--hypernetwork-dir:超网络目录。
--localizations-dir:本地化目录。
--styles-file:用于样式的文件名,默认为 "styles.csv"。
--ui-config-file:用于UI配置的文件名,默认为 "ui-config.json"。
--no-progressbar-hiding:不隐藏Gradio UI中的进度条(默认隐藏,因为在浏览器中使用硬件加速会降低机器学习速度)。
--max-batch-count:UI的最大批次计数值,默认为16。
--ui-settings-file:用于UI设置的文件名,默认为 "config.json"。
--allow-code:允许从Web UI执行自定义脚本。
--share:使用Gradio的share=True,并使UI通过其网站访问(对我来说不起作用,但您可能会更幸运)。
--listen:使用0.0.0.0作为服务器名称启动Gradio,允许响应网络请求。
--port:使用给定的服务器端口启动Gradio,需要根/管理员权限才能使用1024以下的端口,默认为7860(如果可用)。 34. --hide-ui-dir-config:从Web UI中隐藏目录配置。
--freeze-settings:禁用编辑设置。
--enable-insecure-extension-access:无论其他选项如何,都启用扩展选项卡。
--gradio-debug:使用--debug选项启动Gradio。
--gradio-auth:设置Gradio身份验证,如 "username:password";或逗号分隔多个,如 "u1:p1,u2:p2,u3:p3"。
--gradio-auth-path:设置Gradio身份验证文件路径,例如 "/path/to/auth/file",与--gradio-auth的格式相同。
--disable-console-progressbars:不在控制台输出进度条。
--enable-console-prompts:在使用txt2img和img2img生成时,在控制台打印提示。
--api:使用API启动Web UI。
--api-auth:设置API身份验证,如 "username:password";或逗号分隔多个,如 "u1:p1,u2:p2,u3:p3"。
--api-log:启用所有API请求的日志记录。
--nowebui:仅启动API,不启动UI。
--ui-debug-mode:不加载模型以快速启动UI。
--device-id:选择要使用的默认CUDA设备(可能需要在此之前设置CUDA_VISIBLE_DEVICES=0,1等环境变量)。
--administrator:管理员权限。
--cors-allow-origins:以逗号分隔的列表形式允许的CORS来源(无空格)。
--cors-allow-origins-regex:以单个正则表达式的形式允许的CORS来源。
--tls-keyfile:部分启用TLS,需要--tls-certfile才能完全生效。
--tls-certfile:部分启用TLS,需要--tls-keyfile才能完全生效。
--server-name:设置服务器主机名。
--gradio-queue:使用Gradio队列;实验性选项;破坏重新启动UI按钮。
--skip-version-check:不检查torch和xformers的版本。
--no-hashing:禁用检查点的sha256哈希,以提高加载性能。
性能类参数
--xformers:启用xformers以加速跨注意层。
--reinstall-xformers:强制重新安装xformers。在升级后使用,但升级后请移除,否则将一直重装xformers。
--force-enable-xformers:无论检查代码是否认为可以运行,都强制启用xformers的跨注意层;如果运行失败,请勿提交错误报告。
--opt-split-attention:强制启用Doggettx的跨注意层优化。默认情况下,对于启用CUDA的系统,此选项已开启。
--opt-split-attention-invokeai:强制启用InvokeAI的跨注意层优化。默认情况下,当CUDA不可用时,此选项已开启。
--opt-split-attention-v1:启用旧版本的分割注意力优化,该版本不会消耗所有可用的显存。
--opt-sub-quad-attention:启用内存高效的子二次交叉注意力层优化。
--sub-quad-q-chunk-size:子二次交叉注意力层优化使用的查询块大小。
--sub-quad-kv-chunk-size:子二次交叉注意力层优化使用的kv块大小。
--sub-quad-chunk-threshold:子二次交叉注意力层优化使用的显存使用率阈值。
--opt-channelslast:为4d张量启用备选布局,仅在具有Tensor核心的Nvidia显卡(16xx及更高版本)上可能导致更快的推理。
--disable-opt-split-attention:强制禁用跨注意层优化。
--disable-nan-check:不检查生成的图像/潜在空间是否包含nan值;在持续集成中运行时无需检查点。
--use-cpu:对指定模块使用CPU作为torch设备。
--no-half:不将模型切换为16位浮点数。
--precision:以此精度进行评估。
--no-half-vae:不将VAE模型切换为16位浮点数。
--upcast-sampling:向上采样。与 --no-half 无效。通常产生与 --no-half 类似的结果,但在使用较少内存的情况下性能更好。
--medvram:启用稳定扩散模型优化,牺牲一点速度以减少显存使用。
--lowvram:启用稳定扩散模型优化,牺牲大量速度以极低的显存使用。
--lowram:将稳定扩散检查点权重加载到显存而非RAM。
--always-batch-cond-uncond:禁用使用 --medvram 或 --lowvram 时为节省内存而启用的条件/无条件批处理。
通用类参数
--autolaunch:在启动时使用系统的默认浏览器打开WebUI URL。
--theme:在WebUI中使用指定的主题(“light”或“dark”)。如果未指定,则使用浏览器的默认主题。
--use-textbox-seed:在UI中使用文本框输入种子(没有上/下箭头,但可以输入长种子)。
--disable-safe-unpickle:禁用对PyTorch模型的恶意代码检查。
--ngrok:用于ngrok的自动令牌,是gradio --share的替代方案。
--ngrok-region:ngrok应该在其中启动的区域。
### Stable Diffusion 运行参数配置及设置方法 为了确保Stable Diffusion能够高效稳定地运行,在实际操作过程中合理配置其运行参数至关重要。这不仅有助于提升模型的执行效率,还能有效降低资源消耗并改善最终图像的质量。 #### 配置环境与准备阶段 在开始之前,需先完成基础环境搭建[^4]。此步骤涉及从GitHub仓库克隆项目至本地,并将预先下载好的模型文件放置于指定路径下(通常是`stable-diffusion-webui/models`)。此外,还需注意安装所有必需的依赖库和服务端口开放等问题。 #### 修改启动脚本中的命令行参数 对于Windows用户而言,可以通过编辑位于`stable-diffusion-webui/`目录下的`webui-user.bat`批处理文件来调整具体的运行参数。打开该文件后找到名为`COMMANDLINE_ARGS`的变量定义位置,依据个人电脑的具体规格对其进行适当修改: ```batch set COMMANDLINE_ARGS=--lowvram --no-half-vae --precision full --xformers --opt-sdp-attention --disable-safe-unpickle --api --listen --port 7860 ``` 上述示例展示了如何针对低内存设备优化性能的一些常用选项组合。其中包含了几个重要的标志位解释如下: - `--medvram`: 启用中等VRAM模式,适用于具有4GB~8GB显存大小的情况; - `--lowvram`: 开启极低VRAM支持,适合只有2GB甚至更低容量GPU的情形; - `--no-half-vae`: 关闭VAE半精度计算,默认开启状态下可能会导致某些老旧硬件出现问题; - `--precision full`: 设置浮点数运算精度为全精度而非混合或半精确实现更好兼容性的同时牺牲一定速度; - `--xformers`: 利用XFormers加速注意力机制层间的交互过程,通常能带来显著提速效果但也可能增加额外开销; - `--opt-sdp-attention`: 应用于自回归解码器内部的一种特殊形式的稀疏门控机制,旨在进一步加快推理时间而不明显影响画质; - `--disable-safe-unpickle`: 禁止安全反序列化功能防止潜在的安全风险但同时也关闭了一些保护措施; - `--api`: 提供RESTful API接口便于外部调用集成开发; - `--listen`: 让服务器监听来自网络上的请求而不是仅仅局限于localhost访问; - `--port 7860`: 自定义HTTP服务监听端口号以便与其他应用共存时不发生冲突。 #### 调整其他高级特性 除了上述基本设定外,还有更多可供探索的功能可以帮助微调整个系统的运作状况。例如启用CUDA多线程调度(`--cuda-threads`)、控制最大缓存尺寸(`--max-cache-size`)等都可以根据实际情况灵活运用以达到最优状态[^3]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值