### 如何在 MATLAB 中绘制联合分布函数
在 MATLAB 中绘制联合分布函数可以通过多种方法实现,具体取决于数据的性质以及所需的精度。以下是基于提供的引用内容和专业知识的一种常见方式。
#### 方法一:通过 Copula 函数与最小二乘法拟合
当需要处理复杂的联合分布时,可以采用 Copula 函数结合最小二乘法来估计联合分布的概率密度函数 (PDF) 和累积分布函数 (CDF)[^2]。这种方法适用于多维随机变量的情况。以下是一个简单的流程:
1. **定义边缘分布**
首先假设每种随机变量具有独立的边缘分布(如正态分布、均匀分布等)。这些边缘分布可以用 `fitdist` 或其他工具箱中的函数进行拟合[^3]。
2. **构建 Copula 模型**
使用 `copulafit` 函数拟合合适的 Copula 类型(例如 Gaussian Copula 或 t-Copula),并获取其参数。
3. **生成联合分布样本**
利用 `copularnd` 函数生成服从指定 Copula 的随机数,并将其映射回原始变量的空间。
4. **绘图**
将上述生成的数据用于绘制二维或三维 PDF/CDF 图形。对于连续型变量,可使用 `ksdensity` 进行核平滑估计;而对于离散型变量,则可以直接统计频率作为近似值[^4]。
```matlab
% 示例代码:绘制两个标准正态分布组成的高斯Copula联合分布图像
mu = [0 0]; sigma = eye(2);
Rho = [.8 .5; .5 .7];
u = copularnd('Gaussian', Rho, 1e4); % 生成Copula随机数
x = norminv(u(:,1), mu(1), sqrt(sigma(1,1))); % 转换到第一个边界的尺度上
y = norminv(u(:,2), mu(2), sqrt(sigma(2,2))); % 转换到第二个边界尺度上
figure;
scatter(x,y,'.');
title('Joint Distribution of Two Normal Variables via Gaussian Copula');
xlabel('X'); ylabel('Y');
[f,xi,yi] = ksdensity([x' ; y'], 'npoints', 100); % 计算核密度估计
surf(xi,yi,freshape(size(xi)), 'EdgeColor','none');
colormap jet;
colorbar;
view(-37.5,30);
```
---
#### 方法二:直接从经验数据出发
如果已有实际观测数据而非理论模型,那么可以从经验角度入手分析联合分布特性。此时无需显式建模 Copulas,而是单纯依赖统计数据完成可视化工作。
- 对于低维度情况 (<3D),推荐使用直方图 (`histogram2`) 来展示频次关系;
- 若目标更高分辨率或者更光滑的结果,则考虑调用非参估计器比如 KDE(`ksdensity`)。
下面给出一段针对双变量情形下的例子程序片段:
```matlab
load fisheriris; % 加载内置鸢尾花数据集
meas = meas(randperm(height(meas),1000),:); % 抽取部分记录形成新矩阵
group = species;
hFig = figure();
for i=unique(group)'
idx = strcmp(group,i);
subplot(length(unique(group)),1,strfind(i,','));
hAxes = gca;
hold on
[f,xi,yi]=kde2d(meas(idx,:),...
[-inf inf],[-inf inf], ...
size(meas(idx,:)));
contourf(xi,yi,f,linspace(min(f(:)),max(f(:)),20));
title(['Class ',char(i)]);
end
linkaxes(hFig.Children,'xy')
shading interp
colormap parula
set(gcf,'Position',[100 100 600 800])
```
此处我们选取了 Fisher's Iris 数据集中的一部分特征向量来进行演示。
---
### 总结
无论是借助 Copula 构造还是依据实测资料描绘,都可以有效呈现多元随机现象之间的相互作用规律。前者侧重解析表达形式便于推广至任意复杂场景下应用;后者则更加直观贴近现实状况适合初步探索阶段研究需求。