keras中构建不同类型的网络

本文旨在详细阐述如何在Keras中构建神经网络,包括使用Sequential()构造简单网络模型,以及深入探讨完全手动创建Model类型的模型,涵盖预训练网络的记载和加载多个预训练模型的场景。
摘要由CSDN通过智能技术生成

0. 写作目的

好记性不如烂笔头。

1. 构建Sequntial()类型的网络

from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D


def Net():
    model = Sequential()
    model.add( Conv2D( filters=64, kernel_size=(3,3), strides=(1,1), padding='same',
          activation='relu' ) )
    model.add( MaxPooling2D(pool_size = (2,2)) )
    model.add( Flatten() )
    model.add( Dense( 128, activation='relu' ) )
    model.add( Dropout( 0.5 ) )
    model.add( Dense( 10, activation='softmax' ) )

    return model 

2. 建立Model类型的模型

2.1 完全手动建立Model类型的模型

from keras.layers import Input, Dense, Flatten, Dropout
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.models import Mode
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值