第T6周:好莱坞明星识别

一、前期工作

● 难度:夯实基础
● 语言:Python3、TensorFlow2

🍺 要求:

  1. 使用categorical_crossentropy(多分类的对数损失函数)完成本次选题
  2. 探究不同损失函数的使用场景与代码实现

🍻 拔高(可选):

  1. 自己搭建VGG-16网络框架
  2. 调用官方的VGG-16网络框架
  3. 使用VGG-16算法训练该模型

🔎 探索(难度有点大)

  1. 准确率达到60%

🦾我的环境:

  • 语言环境:Python3.8
  • 编译器:Jupyter Lab
  • 深度学习环境:
    • TensorFlow2

1. 设置GPU

如果使用的是CPU可以忽略这步

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

gpu0
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')

2. 导入数据

import matplotlib.pyplot as plt
import os,PIL

# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)

# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)

from tensorflow import keras
from tensorflow.keras import layers,models

import pathlib
data_dir = "data/p6/"

data_dir = pathlib.Path(data_dir)
data_dir
PosixPath('data/p6')

3. 查看数据

image_count = len(list(data_dir.glob('*/*.jpg')))

print("图片总数为:",image_count)
图片总数为: 1800
roses = list(data_dir.glob('Jennifer Lawrence/*.jpg'))
PIL.Image.open(str(roses[2]))

在这里插入图片描述

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中

测试集与验证集的关系:

  1. 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
  2. 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
  3. 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
batch_size = 32
img_height = 224
img_width = 224

label_mode:

  • int:标签将被编码成整数(使用的损失函数应为:sparse_categorical_crossentropy loss)。
  • categorical:标签将被编码为分类向量(使用的损失函数应为:categorical_crossentropy loss)。
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 1800 files belonging to 17 classes.
Using 1440 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 1800 files belonging to 17 classes.
Using 360 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['Angelina Jolie', 'Brad Pitt', 'Denzel Washington', 'Hugh Jackman', 'Jennifer Lawrence', 'Johnny Depp', 'Kate Winslet', 'Leonardo DiCaprio', 'Megan Fox', 'Natalie Portman', 'Nicole Kidman', 'Robert Downey Jr', 'Sandra Bullock', 'Scarlett Johansson', 'Tom Cruise', 'Tom Hanks', 'Will Smith']

2. 可视化数据

plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

3. 再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(32, 224, 224, 3)
(32,)
  • Image_batch是形状的张量(32,180,180,3)。这是一批形状180x180x3的32张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(32,)的张量,这些标签对应32张图片

4. 配置数据集

  • shuffle():打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
  • prefetch():预取数据,加速运行

函数原型:

tf.keras.preprocessing.image_dataset_from_directory(
    directory,
    labels="inferred",
    label_mode="int",
    class_names=None,
    color_mode="rgb",
    batch_size=32,
    image_size=(256, 256),
    shuffle=True,
    seed=None,
    validation_split=None,
    subset=None,
    interpolation="bilinear",
    follow_links=False,
)

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、构建CNN网络

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入,fashion_mnist 数据集中的图片,形状是 (224, 224, 3)即灰度图像。我们需要在声明第一层时将形状赋值给参数input_shape

网络结构图(可单击放大查看):
在这里插入图片描述

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Dropout(0.5),  
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.AveragePooling2D((2, 2)),     
    layers.Dropout(0.5),  
    layers.Conv2D(128, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.5), 
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(len(class_names))               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 rescaling_1 (Rescaling)     (None, 224, 224, 3)       0         
                                                                 
 conv2d_3 (Conv2D)           (None, 222, 222, 16)      448       
                                                                 
 average_pooling2d_2 (Avera  (None, 111, 111, 16)      0         
 gePooling2D)                                                    
                                                                 
 conv2d_4 (Conv2D)           (None, 109, 109, 32)      4640      
                                                                 
 average_pooling2d_3 (Avera  (None, 54, 54, 32)        0         
 gePooling2D)                                                    
                                                                 
 dropout_1 (Dropout)         (None, 54, 54, 32)        0         
                                                                 
 conv2d_5 (Conv2D)           (None, 52, 52, 64)        18496     
                                                                 
 average_pooling2d_4 (Avera  (None, 26, 26, 64)        0         
 gePooling2D)                                                    
                                                                 
 dropout_2 (Dropout)         (None, 26, 26, 64)        0         
                                                                 
 conv2d_6 (Conv2D)           (None, 24, 24, 128)       73856     
                                                                 
 dropout_3 (Dropout)         (None, 24, 24, 128)       0         
                                                                 
 flatten_1 (Flatten)         (None, 73728)             0         
                                                                 
 dense_1 (Dense)             (None, 128)               9437312   
                                                                 
 dense_2 (Dense)             (None, 17)                2193      
                                                                 
=================================================================
Total params: 9536945 (36.38 MB)
Trainable params: 9536945 (36.38 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

四、训练模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

4.1.设置动态学习率

📮 ExponentialDecay函数
tf.keras.optimizers.schedules.ExponentialDecay是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。

🔎 主要参数

  • initial_learning_rate(初始学习率):初始学习率大小。
  • decay_steps(衰减步数):学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。例如,如果 decay_steps 设置为 10,则每10步衰减一次。
  • decay_rate(衰减率):学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。
  • staircase(阶梯式衰减):一个布尔值,控制学习率的衰减方式。如果设置为 True,则学习率在每个 decay_steps 步之后直接减小,形成阶梯状下降。如果设置为 False,则学习率将连续衰减。
# 设置初始学习率
initial_learning_rate = 0.1

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, 
        decay_steps=10,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

model.compile(optimizer=optimizer,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
WARNING:absl:At this time, the v2.11+ optimizer `tf.keras.optimizers.Adam` runs slowly on M1/M2 Macs, please use the legacy Keras optimizer instead, located at `tf.keras.optimizers.legacy.Adam`.
WARNING:absl:There is a known slowdown when using v2.11+ Keras optimizers on M1/M2 Macs. Falling back to the legacy Keras optimizer, i.e., `tf.keras.optimizers.legacy.Adam`.

损失函数Loss详解:

1. binary_crossentropy(对数损失函数)

与 sigmoid 相对应的损失函数,针对于二分类问题。

2. categorical_crossentropy(多分类的对数损失函数)

与 softmax 相对应的损失函数,如果是one-hot编码,则使用 categorical_crossentropy

📌 调用方法一

model.compile(optimizer="adam",
              loss='categorical_crossentropy',
              metrics=['accuracy'])

📌 调用方法二

model.compile(optimizer="adam",
              loss=tf.keras.losses.CategoricalCrossentropy(),
              metrics=['accuracy'])

3. sparse_categorical_crossentropy(稀疏性多分类的对数损失函数)

与 softmax 相对应的损失函数,如果是整数编码,则使用 sparse_categorical_crossentropy

📌 调用方法一

model.compile(optimizer="adam",
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

📌 调用方法二

model.compile(optimizer="adam",
              loss=tf.keras.losses.SparseCategoricalCrossentropy(),
              metrics=['accuracy'])

函数原型

tf.keras.losses.SparseCategoricalCrossentropy(
    from_logits=False,
    reduction=losses_utils.ReductionV2.AUTO,
    name='sparse_categorical_crossentropy'
)

参数说明:

  • from_logits: 为True时,会将y_pred转化为概率(用softmax),否则不进行转换,通常情况下用True结果更稳定;
  • reduction:类型为tf.keras.losses.Reduction,对loss进行处理,默认是AUTO;
  • name: name

4.2.早停与保存最佳模型参数

关于ModelCheckpoint的详细介绍可参考文章 🔗ModelCheckpoint 讲解【TensorFlow2入门手册】

EarlyStopping()参数说明:

  • monitor: 被监测的数据。
  • min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
  • patience: 没有进步的训练轮数,在这之后训练就会被停止。
  • verbose: 详细信息模式。
  • mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
  • baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
  • estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。

关于EarlyStopping()的详细介绍可参考文章 🔗早停 tf.keras.callbacks.EarlyStopping() 详解【TensorFlow2入门手册】

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

epochs = 100

# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
                                verbose=1,
                                save_best_only=True,
                                save_weights_only=True)

# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', 
                             min_delta=0.001,
                             patience=20, 
                             verbose=1)

4.3. 模型训练

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer, earlystopper])
Epoch 1/100
2024-07-13 22:12:36.681181: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:114] Plugin optimizer for device_type GPU is enabled.
45/45 [==============================] - ETA: 0s - loss: 14467.0615 - accuracy: 0.0681
...
Epoch 23/100
45/45 [==============================] - ETA: 0s - loss: 2.8133 - accuracy: 0.1097
Epoch 23: val_accuracy did not improve from 0.11667
45/45 [==============================] - 2s 55ms/step - loss: 2.8133 - accuracy: 0.1097 - val_loss: 2.8197 - val_accuracy: 0.1167
Epoch 23: early stopping

五、模型评估

5.1. Loss与Accuracy图

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(len(loss))

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

5.2. 指定图片进行预测

# 加载效果最好的模型权重
model.load_weights('best_model.h5')
from PIL import Image
import numpy as np

img = Image.open("./data/p6/Scarlett Johansson/006_07bd8618.jpg")  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])

img_array = tf.expand_dims(image, 0) 

predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])
1/1 [==============================] - 0s 14ms/step
预测结果为: Scarlett Johansson

🔬实验总结

1.直接调用VGG16
效果其实很差,过拟合严重,于是通过以下手段调优:

  1. 添加BN层:有效
  2. Drop层:卷积层无效,甚至有反效果,全连接层有效
  3. L2正则化:有效,但参数不能设置很高
  4. 减少全连接层神经元数量
  5. 调整图片尺寸,224x224------256x256
    上述操作结束,已经可以达到0.5左右,最高大概0.56

2. 加载预训练参数

  1. 自己搭建的VGG16有BN层,无法直接加载参数,只能含泪注释掉
  2. 加载前13层,并冻结参数,减少顶层神经元,并加入BN层和Drop层,可以有效提升精度,大概20多个点,最终精度可以稳步达到0.7以上,跑了几次,最高能达到0.76+
  • 8
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值