Week T6 - 好莱坞明星识别(CNN),使用最佳模型保存&早停机制

一、前期工作

本文将采用普通CNN实现好莱坞明星的识别。

我的环境:

  • 语言环境:Python3.7.8
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2

🍺 要求

  1. 使用categorical_crossentropy(多分类的对数损失函数)完成本次选题
  2. 探究不同损失函数的使用场景与代码实现

🍻 拔高(可选)

  1. 自己搭建VGG-16网络框架
  2. 调用官方的VGG-16网络框架
  3. 使用VGG-16算法训练该模型

🔎** 探索(难度有点大)**

  1. 准确率达到60%

1. 导入本地数据

import matplotlib.pyplot as plt
import os,PIL
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers,models
import pathlib
data_dir = "D:\jupyter notebook\DL-100-days\datasets\hollywood-celebraties/"

data_dir = pathlib.Path(data_dir)

3. 查看数据

image_count = len(list(data_dir.glob('*/*.jpg')))

print("图片总数为:",image_count)
图片总数为: 1800
imges = list(data_dir.glob('Hugh Jackman/*.jpg'))
PIL.Image.open(str(imges[0]))

在这里插入图片描述

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中:

● tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。这个函数可以以更方便的方式加载图像数据,用于训练和评估神经网络模型。

测试集与验证集的关系:

  1. 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
  2. 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
  3. 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
batch_size = 32
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.1,
    subset="training",
    label_mode = "categorical",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

在这里插入图片描述

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.1,
    subset="validation",
    label_mode = "categorical",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

在这里插入图片描述

通过class_names查看数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)

在这里插入图片描述

2. 可视化数据

import numpy as np

plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[np.argmax(labels[i])])
        
        plt.axis("off")

在这里插入图片描述

3. 再次检查数据(检查数据的size是否和加载时设置的数据一致)

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(32, 224, 224, 3)
(32, 17)
  • Image_batch是形状的张量(32,240,240,3)。这是一批大小为240x240x3的32张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(32,)的张量,这些标签对应32张图片。

4. 配置数据集

  • shuffle():打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456

  • prefetch():预取数据,加速运行

  • cache():将数据集缓存到内存当中,加速运行

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、构建CNN网络

使用的CNN结构与前三课一致,不同的是:在最后一个卷积层(也就是卷积层3)的前后均增加了Dropout()(正则化)

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Dropout(0.5),  
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.AveragePooling2D((2, 2)),     
    layers.Dropout(0.5),  
    layers.Conv2D(128, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.5), 
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(len(class_names))               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构

四、训练模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

1. 设置动态学习率

📮 ExponentialDecay函数:
tf.keras.optimizers.schedules.ExponentialDecay是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。

🔎 主要参数:

initial_learning_rate(初始学习率):初始学习率大小。

decay_steps(衰减步数):学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。例如,如果 decay_steps 设置为 10,则每10步衰减一次。

decay_rate(衰减率):学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。

staircase(阶梯式衰减):一个布尔值,控制学习率的衰减方式。如果设置为 True,则学习率在每个 decay_steps 步之后直接减小,形成阶梯状下降。如果设置为 False,则学习率将连续衰减。

# 设置初始学习率
initial_learning_rate = 1e-4

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, 
        decay_steps=60,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.96,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

model.compile(optimizer=optimizer,
              loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

注:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:

learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)

学习率大与学习率小的优缺点分析:

学习率大

● 优点:
○ 1、加快学习速率。
○ 2、有助于跳出局部最优值。
● 缺点:
○ 1、导致模型训练不收敛。
○ 2、单单使用大学习率容易导致模型不精确。

学习率小

● 优点:
○ 1、有助于模型收敛、模型细化。
○ 2、提高模型精度。
● 缺点:
○ 1、很难跳出局部最优值。
○ 2、收敛缓慢。

损失函数Loss详解

  1. binary_crossentropy(对数损失函数)

与 sigmoid 相对应的损失函数,针对于二分类问题。

  1. categorical_crossentropy(多分类的对数损失函数)

与 softmax 相对应的损失函数,如果是one-hot编码,则使用 categorical_crossentropy,两种调用方式,如下图:
在这里插入图片描述

  1. sparse_categorical_crossentropy(稀疏性多分类的对数损失函数)

与 softmax 相对应的损失函数,如果是整数编码,则使用 sparse_categorical_crossentropy,两种调用方式,如下图:
在这里插入图片描述

sparse_categorical_crossentropy的函数原型以及参数说明:
在这里插入图片描述

2. 早停与保存最佳模型参数

EarlyStopping()参数说明:

monitor: 被监测的数据。

min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。

patience: 没有进步的训练轮数,在这之后训练就会被停止。

verbose: 详细信息模式。

mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。

baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。

estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。

关于EarlyStopping()的详细介绍可参考文章 🔗早停 tf.keras.callbacks.EarlyStopping() 详解【TensorFlow2入门手册】

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

epochs = 100

# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
                                verbose=1,
                                save_best_only=True,
                                save_weights_only=True)

# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', 
                             min_delta=0.001,
                             patience=20, 
                             verbose=1)

3. 训练模型

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer, earlystopper])

在这里插入图片描述

五、模型评估

1.绘制Loss与Accuracy图

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(len(loss))

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

2. 指定图片进行预测

# 加载效果最好的模型权重
model.load_weights('best_model.h5')

from PIL import Image
import numpy as np

img = Image.open("D:/jupyter notebook/DL-100-days/datasets/sportshoes-data/test/adidas/0.jpg")  #被预测图片的本地路径
image = tf.image.resize(img, [img_height, img_width])

img_array = tf.expand_dims(image, 0) 

predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])


from PIL import Image
import numpy as np

img = Image.open("D:/jupyter notebook/DL-100-days/datasets/hollywood-celebraties/Jennifer Lawrence/003_963a3627.jpg")  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])

img_array = tf.expand_dims(image, 0) 

predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

在这里插入图片描述

六、其他

  1. 关于VGG-16的结构与原理,有更好的伙伴给予了分析,请看这里
  2. 三种损失函数的使用场景与区别:
    (1)binary_crossentropy(对数损失函数):更适用于 “yes or no"的问题,分类结果具有唯一性。计算公式:
    在这里插入图片描述
    其中,a是神经网络给出的预测值,y是真实标签(0或1)
    使用场景:常用于二分类问题,通常需要在网络的最后一层添加sigmoid进行配合使用
    (2)categorical_crossentropy(多分类的对数损失函数)

在这里插入图片描述
其中:i是第i个样本, j 是第 j 个类 ,t是真实标签,p是神经网络给出的第j个类的预测值。[原文p are the predictions, t are the targets, i denotes the data point and j denotes the class.]
使用场景:适用于多分类问题,并使用softmax作为输出层的激活函数的情况
以上引用:损失函数介绍
(3)sparse_categorical_crossentropy(稀疏性多分类的对数损失函数):与(2)不同的点在于样本标签以何种编码方式进行编码,在多分类问题中,根据不同的编码方式确定时选择(3),还是选择(2)。两种编码方式的说明如下:
在这里插入图片描述
拓展阅读:三种损失函数详细说明

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值