第四章 神经网络
前两章的贝叶斯分类、非参数判别技术和本章的神经网络是三种监督的学习方法。
在非线性问题上,前面提到了“分段线性分类”的思路,然而当面对一个很复杂的样本空间时,求其各个类别之间的线性关系是很困难的,而多层神经网络提供了一个对任意分类问题寻求最优解的方法,模型非常强大,而算法则比较简单,基本训练和分类依然是线性判别,只是执行的过程对输入信号进行非线性映射。
训练多层网络的方法,一种流行的方法是“反向传播算法(backpropagation)”,简称“BP算法”,是基于“误差的梯度下降准则”的一种自然延伸。该方法功能强大,易于理解,即时参数繁杂其训练也非常简单。因此神经网络是一种适应复杂模型的非常灵活的启发式的统计模式识别技术,在自适应模式识别领域占据了主流地位。