如果逆矩阵
A−1
存在,那么式
Ax=b
肯定对于每一个向量
b
恰好存在一个解。但是,对于方程组而言,对于向量
(其中 a 取任意实数)也是该方程组的解。
8.4.1 线性相关与线性无关
为了分析方程有多少个解,我们可以将
一般而言,这种操作被称为 线性组合(linear combination)。形式上,一组向量的线性组合,是指每个向量乘以对应标量系数之后的和,即:
确定
Ax=b
是否有解相当于确定向量
b
是否在
为了使方程
Ax=b
对于任意向量
b∈Rm
都存在解,我们要求
A
的列空间构成整个
不等式
正式地说,这种冗余被称为线性相关(linear dependence)。如果一组向量中的任意一个向量都不能表示成其他向量的线性组合,那么这组向量被称为线性无关(linearly independent)。如果某个向量是一组向量中某些向量的线性组合,那么我们将这个向量加入到这组向量后不会增加这组向量的生成子空间。这意味着,如果一个矩阵的列空间涵盖整个
Rm
,那么该矩阵必须包含至少一组
m
个线性无关的向量。这是式
让我们举几个关于线性无关和线性相关的例子。首先是线性无关的例子。
例1
因为⎡⎣⎢000⎤⎦⎥=c1⎡⎣⎢100⎤⎦⎥+c2⎡⎣⎢010⎤⎦⎥+c3⎡⎣⎢001⎤⎦⎥ 的解,只有以下解⎧⎩⎨⎪⎪c1=0c2=0c3=0
所以向量 ⎡⎣⎢100⎤⎦⎥ 、向量 ⎡⎣⎢010⎤⎦⎥ 、向量 ⎡⎣⎢001⎤⎦⎥ 线性无关。
例2
因为 ⎡⎣⎢000⎤⎦⎥=c1⎡⎣⎢100⎤⎦⎥+c2⎡⎣⎢010⎤⎦⎥ 的解,只有以下解{c1=0c2=0
所以向量 ⎡⎣⎢100⎤⎦⎥ 、向量 ⎡⎣⎢010⎤⎦⎥ 线性无关。关于线性相关的例子
例3
因为 ⎡⎣⎢000⎤⎦⎥=c1⎡⎣⎢100⎤⎦⎥+c2⎡⎣⎢010⎤⎦⎥+c3⎡⎣⎢310⎤⎦⎥ 的解,不仅有以下解
⎧⎩⎨⎪⎪c1=0c2=0c3=0
,还有
⎧⎩⎨⎪⎪c1=3c2=1c3=−1
等解。
所以向量 ⎡⎣⎢100⎤⎦⎥ 、向量 ⎡⎣⎢310⎤⎦⎥ 线性相关。
例2
因为 ⎡⎣⎢000⎤⎦⎥=c1⎡⎣⎢100⎤⎦⎥+c2⎡⎣⎢010⎤⎦⎥+c3⎡⎣⎢001⎤⎦⎥+c4⎡⎣⎢a1a2a3⎤⎦⎥ 的解,不仅有以下解
⎧⎩⎨⎪⎪⎪⎪⎪⎪c1=0c2=0c3=0c4=0
,还有
⎧⎩⎨⎪⎪⎪⎪⎪⎪c1=a1c2=a2c3=a3c4=−1
等解,所以向量 ⎡⎣⎢100⎤⎦⎥ 、向量 ⎡⎣⎢010⎤⎦⎥ 、向量 ⎡⎣⎢001⎤⎦⎥ 、向量 ⎡⎣⎢a1a2a3⎤⎦⎥ 线性相关。
同样,因为 ⎡⎣⎢⎢⎢⎢00⋮0⎤⎦⎥⎥⎥⎥=c1⎡⎣⎢⎢⎢⎢10⋮0⎤⎦⎥⎥⎥⎥+c2⎡⎣⎢⎢⎢⎢01⋮0⎤⎦⎥⎥⎥⎥+⋯+cm⎡⎣⎢⎢⎢⎢00⋮1⎤⎦⎥⎥⎥⎥+cm+1⎡⎣⎢⎢⎢⎢a1a2⋮am⎤⎦⎥⎥⎥⎥ 的解,不仅有以下解
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪c1c2cmcm+1==⋮==0000
,还有
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪c1c2cmcm+1==⋮==a1a2am−1
等解,所以向量 ⎡⎣⎢⎢⎢⎢10⋮0⎤⎦⎥⎥⎥⎥ 、向量 ⎡⎣⎢⎢⎢⎢01⋮0⎤⎦⎥⎥⎥⎥ 、向量 ⎡⎣⎢⎢⎢⎢00⋮1⎤⎦⎥⎥⎥⎥ 、向量 ⎡⎣⎢⎢⎢⎢a1a2⋮am⎤⎦⎥⎥⎥⎥ 线性相关。8.4.2 基
对于 Rm 的任意元素向量 ⎡⎣⎢⎢⎢⎢⎢y1y2⋮ym⎤⎦⎥⎥⎥⎥⎥ ,当 ⎡⎣⎢⎢⎢⎢⎢y1y2⋮ym⎤⎦⎥⎥⎥⎥⎥=c1⎡⎣⎢⎢⎢⎢a11a21⋮am1⎤⎦⎥⎥⎥⎥+c2⎡⎣⎢⎢⎢⎢a12a22⋮am2⎤⎦⎥⎥⎥⎥+⋯+cn⎡⎣⎢⎢⎢⎢a1na2n⋮amn⎤⎦⎥⎥⎥⎥ 只有一组解时,我们把集合
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎡⎣⎢⎢⎢⎢a11a21⋮am1⎤⎦⎥⎥⎥⎥,⎡⎣⎢⎢⎢⎢a12a22⋮am2⎤⎦⎥⎥⎥⎥,⋯,⎡⎣⎢⎢⎢⎢a1na2n⋮amn⎤⎦⎥⎥⎥⎥⎫⎭⎬⎪⎪⎪⎪⎪⎪⎪⎪称作基。
基是为了表示 Rm 的任意元素所必需的最少向量构成的集合。因此,线性无关是限定零向量的概念,基是以 Rm 的所有向量为对象的概念。8.4.3 子空间
假设 c 为任意实数。若
Rm 的子集 W 满足这两个条件:
1.W 的任意元素的 c 倍也是W 的元素。
2. W 的任意元素的和也是W 的元素。
即满足这两个条件时,
1. 如果 ⎡⎣⎢⎢⎢⎢a1ia2i⋮ami⎤⎦⎥⎥⎥⎥∈W ,那么 c⎡⎣⎢⎢⎢⎢a1ia2i⋮ami⎤⎦⎥⎥⎥⎥∈W 。
2. 如果 ⎡⎣⎢⎢⎢⎢a1ia2i⋮ami⎤⎦⎥⎥⎥⎥∈W 并且 ⎡⎣⎢⎢⎢⎢⎢a1ja2j⋮amj⎤⎦⎥⎥⎥⎥⎥∈W ,那么 ⎡⎣⎢⎢⎢⎢a1ia2i⋮ami⎤⎦⎥⎥⎥⎥+⎡⎣⎢⎢⎢⎢⎢a1ja2j⋮amj⎤⎦⎥⎥⎥⎥⎥∈W 。
我们就把 W 叫做Rm 的线性子空间,简称子空间。一组向量的线性子空间是原始向量线性组合后所能抵达的点的集合。要想使矩阵可逆,我们还需要保证式 Ax=b 对于每一个 b 值至多有一个解。为此,我们需要确保该矩阵至多有
m 个列向量。否则,该方程会有不止一个解。
综上所述,这意味着该矩阵必须是一个方阵(square),即 m=n ,并且所有列向量都是线性无关的。一个列向量线性相关的方阵被称为奇异的(singular)。
如果矩阵 A 不是一个方阵或者是一个奇异的方阵,该方程仍然可能有解。但是我们不能使用矩阵逆去求解。
目前位置,我们已经讨论了逆矩阵左乘。我们也可以定义逆矩阵右乘:
AA−1=I.
对于方阵而言,它的左逆和右逆是相等的。