1. 问题引入——方程的出现是算术走向代数的重要标志(代数的任务就是解方程)
如,鸡兔同笼问题,用代数方程来解决就很简单。


2. 微分方程是一种数学模型。
数学建模:用数学的语言和方法,通过对实际问题的抽象和简化,建立数学模型,以辅助实际问题的解决。

3. 微分方程实例1——马尔萨斯人口增长模型(适用于18世纪前,而不适用于19世纪后)


荷兰数学家胡斯特根据19世纪后的人口统计资料,考虑人口增长的“密度制约因素”后,对马尔萨斯人口模型进行了修改。

4. 微分方程实例2——湖南长沙马王堆汉墓考古



5. 微分方程的相关定义(常微分方程、微分方程的阶、一阶微分方程、一阶线性微分方程、一阶非线性微分方程、二阶微分方程、n阶微分方程、隐式表达式、n阶线性微分方程)


6. 微分方程的解

7. n阶微分方程的通解


8. 微分方程的特解

9. 微分方程的初始条件(初值问题或柯西问题)

10. 微分方程的显式解与隐式解(隐式通解、显式通解)


11. 微分方程的积分曲线(积分曲线族、积分曲线簇)


12. 微分方程积分曲线示例

13. 线素、线素场及向量场


本文探讨了微分方程作为数学模型的重要性,通过具体实例如马尔萨斯人口增长模型和考古学中的应用,介绍了微分方程的基本概念、解的类型以及积分曲线的概念。同时,文章涵盖了从一阶到高阶微分方程的定义,以及显式解与隐式解的区别。
3392

被折叠的 条评论
为什么被折叠?



