微分方程模型(一)

人口模型

量化人口增长的趋势

1.Malthus 模型

模型假设

(i)设x(t)表示t时刻的人口数,且x(t)连续可微。
(ii)人口的增长率r 是常数(增长率=出生率—死亡率)。
(iii)人口数量的变化是封闭的,即人口数量的增加与减少只取决于人口中个体的
生育和死亡,且每一个体都具有同样的生育能力与死亡率。

建模求解:

由假设,t时刻到t + Δt 时刻人口的增量为x(t + Δt) − x(t) = rx(t)Δt。由泰勒展开式得x(t + Δt) − x(t) = (dx/dt)Δt.

于是可以得到:dx/dt=rx。x(0)=x^{_{0}}

求解微分方程得:x (t)= xe^{rt}.

模型评价:

基本符合1700~1961的世界人口预测,但是不符合1790年以来的美国人口增长规律。

显然,用这一模型进行预测的结果远高于实际人口增长,误差的原因是对增长率r
的估计过高。由此,可以对r 是常数的假设提出疑问。

2.阻滞增长模型(Logistic 模型)

我们将增长率看成随人口增长而减少的函数,且r(x)为x的减函数。符合自然生长的规律。

模型假设

(i)设r(x)为x的线性函数,r(x) = r − sx。(工程师原则,首先用线性

(ii)自然资源与环境条件所能容纳的最大人口数为x_{m},即当x = x_{m} 时,增长率 r( x_{m})=0.

建模与求解:

由假设(i),(ii)可得r(x),即r(x)=r(1- x/x_{m}),

同理有 dx/dt=r(1- x/x_{m})x,  x(t_{0})=x_{0}.

求得x(t)=\frac{x_{m}}{1+(\frac{x_{m}}{x_{0}}-1)e^{-r(t-t_{0})}}.

与 Malthus 模型一样,代入一些实际数据进行验算,在1930 年之后,计算与实际偏差较大。原因之一是60 年代
的实际人口已经突破了假设的极限人口x_{m} ,由此可知,本模型的缺点之一就是不易确定 x_{m}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值