高等数学学习笔记——第七十七讲——直角坐标系下三重积分的计算

本文探讨了三重积分在几何中的应用,通过类比土豆的不同切法,深入浅出地解释了投影法和截面法的概念。文章重点介绍了如何利用这两种方法计算空间区域的体积,并讨论了对称区域上积分的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 问题的引入——三重积分的实际背景

土豆的切法(切丝、切片、切丁)与三重积分的关系(先一后二法——投影法、先二后一法——截面法)

 

2. 投影法(投影区域积分法,先一后二法,切丝法)

1. 空间积分区域的类型(关于z轴的简单区域)

 

2. 三重积分计算的“先一后二”法——投影法

通常,用更简单的形式记为:

 

3. 截面法(先二后一法,切片法)

 

4. 对称区域上的三重积分(偶倍奇零)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值